Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Dev Neurosci ; : 1-15, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38797164

RESUMEN

INTRODUCTION: The complement response activates upon reperfusion in neonatal hypoxic-ischemic encephalopathy (HIE) and contributes to excessive neuroinflammation and worse outcomes. C5a is a powerful anaphylatoxin central to each of the complement pathways, and its engagement with C5aR1 is directly tied to brain injury and neuronal death. Reasoning C5aR1 antagonism can decrease excessive neuroinflammation and thereby improve neurological and functional outcomes, we tested this hypothesis in a rat model of HIE with PMX205, a small molecule that inhibits C5a-C5aR1 interaction. METHODS: Term-equivalent pups (P10-12) were subjected to mild-moderate HIE by Vannucci's method and treated with PMX205. We compared motor and cognitive outcomes with two behavioral tests each (food handling and accelerod; novel object recognition [NOR] and open field) to improve the accuracy of our conclusions. RESULTS: Improvements were observed in fine motor function, balance, and exploratory behaviors, but little to no improvement in recognition memory and gross motor function. Lesion area and histological assessments showed robust cortical neuroprotection from treatment but persistent injury to the CA1 region of the hippocampus. Better structural and functional outcomes were seen within 1 day of treatment, suggesting C5aR1 antagonism beyond the latent injury phase may impair recovery. In a dose-response experiment, cerebral area loss from injury was improved only in female rats, suggesting underlying sexual dimorphisms in the complement response. CONCLUSION: These results demonstrate proof-of-concept for targeting C5aR1 signaling in neonatal HIE with PMX205 and underscore the role of sex in hypoxic-ischemic injury.

2.
Behav Brain Res ; 437: 114119, 2023 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-36162642

RESUMEN

Neonatal hypoxic ischemic encephalopathy (HIE) is a neurological disease caused by restricted oxygen and blood flow to the brain at or around the time of birth. Long term cognitive and motor sequelae are common and demonstrate sexual dimorphism in animal studies. Therapeutic hypothermia (TH) is the standard of care for HIE, but provides incomplete neuroprotection. Using the Vannucci model of neonatal HIE, term-equivalent 11-day old rat pups were subjected to mild-moderate hypoxic-ischemic injury (HII), and a subset of animals were treated with TH. Sex-dependent neuroprotection was measured with gross and fine motor control assays, and functional deficits detected with these assays were correlated to injury in specific brain structures. At the equivalent of human adolescence and adulthood (P51-89), accelerod and beam walking tests were used to assess gross motor function, and string-pulling and food handling tests were used to assess fine motor function. At necropsy (P94-97), brain lesions were primarily focused to the posterior cerebrum and characterized by variable reduction in cortical, thalamic and hippocampal regions and glial scarring. Gross motor impairment was detected in male rats with untreated and TH-treated HIE in the accelerod test, but beam walk test data was confounded by the lower body mass of untreated male rats. HIE animals of both sexes demonstrated deficit in the forelimb contralateral to ischemic surgery, observed as unilaterally impaired food handling behaviors, and in string pulling as decreased string contacts and increased in bracing behavior. However, kinematic analyses revealed sex-specific decreases in peak speeds in string reaching and pulling movements. In both sexes, treatment with TH improved body mass, some measures of contralateral forelimb impairment, and the severity of brain lesions to levels not different to Sham surgery rats. Unique differences in behavior following TH were observed in female rats, who took longer to consume food items but traversed beams and approached strings faster than untreated and Sham females. Future use of these motor assays may unravel the subtle, sex-specific differences in HIE outcomes and in developing a customized therapeutic approach to neonatal brain injury.


Asunto(s)
Hipotermia Inducida , Hipoxia-Isquemia Encefálica , Adulto , Animales , Femenino , Humanos , Masculino , Ratas , Animales Recién Nacidos , Hipoxia-Isquemia Encefálica/patología , Neuroprotección
3.
J Bacteriol ; 203(8)2021 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-33526612

RESUMEN

Large clostridial toxins (LCTs) are secreted virulence factors found in several species, including Clostridioides difficile, Clostridium perfringens, Paeniclostridium sordellii, and Clostridium novyi LCTs are large toxins that lack a secretion signal sequence, and studies by others have shown that the LCTs of C. difficile, TcdA and TcdB, require a holin-like protein, TcdE, for secretion. The TcdE gene is located on the pathogenicity locus (PaLoc) of C. difficile, and holin-encoding genes are also present in the LCT-encoded PaLocs from P. sordellii and C. perfringens However, the holin (TpeE) associated with the C. perfringens LCT TpeL has no homology and a different membrane topology than TcdE. In addition, TpeE has a membrane topology identical to that of the TatA protein, which is the core of the twin-arginine translocation (Tat) secretion system. To determine if TpeE was necessary and sufficient to secrete TpeL, the genes from a type C strain of C. perfringens were expressed in a type A strain of C. perfringens, HN13, and secretion was measured using Western blot methods. We found that TpeE was required for TpeL secretion and that secretion was not due to cell lysis. Mutant forms of TpeE lacking an amphipathic helix and a charged C-terminal domain failed to secrete TpeL, and mutations that deleted conserved LCT domains in TpeL indicated that only the full-length protein could be secreted. In summary, we have identified a novel family of holin-like proteins that can function, in some cases, as a system of protein secretion for proteins that need to fold in the cytoplasm.IMPORTANCE Little is known about the mechanism by which LCTs are secreted. Since LCTs are major virulence factors in clostridial pathogens, we wanted to define the mechanism by which an LCT in C. perfringens, TpeL, is secreted by a protein (TpeE) lacking homology to previously described secretion-associated holins. We discovered that TpeE is a member of a widely dispersed class of holin proteins, and TpeE is necessary for the secretion of TpeL. TpeE bears a high degree of similarity in membrane topology to TatA proteins, which form the pore through which Tat secretion substrates pass through the cytoplasmic membrane. Thus, the TpeE-TpeL secretion system may be a model for understanding not only holin-dependent secretion but also how TatA proteins function in the secretion process.


Asunto(s)
Proteínas Bacterianas/metabolismo , Sistemas de Secreción Bacterianos/metabolismo , Toxinas Bacterianas/metabolismo , Clostridium perfringens/metabolismo , Proteínas Bacterianas/genética , Sistemas de Secreción Bacterianos/genética , Clostridium perfringens/genética , Regulación Bacteriana de la Expresión Génica , Transporte de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA