Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Heliyon ; 10(7): e29128, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38623208

Pesticides are chemical constituents used to prevent or control pests, including insects, rodents, fungi, weeds, and other unwanted organisms. Despite their advantages in crop production and disease management, the use of pesticides poses significant hazards to the environment and public health. Pesticide elements have now perpetually entered our atmosphere and subsequently contaminated water, food, and soil, leading to health threats ranging from acute to chronic toxicities. Pesticides can cause acute toxicity if a high dose is inhaled, ingested, or comes into contact with the skin or eyes, while prolonged or recurrent exposure to pesticides leads to chronic toxicity. Pesticides produce different types of toxicity, for instance, neurotoxicity, mutagenicity, carcinogenicity, teratogenicity, and endocrine disruption. The toxicity of a pesticide formulation may depend on the specific active ingredient and the presence of synergistic or inert compounds that can enhance or modify its toxicity. Safety concerns are the need of the hour to control contemporary pesticide-induced health hazards. The effectiveness and implementation of the current legislature in providing ample protection for human health and the environment are key concerns. This review explored a comprehensive summary of pesticides regarding their updated impacts on human health and advanced safety concerns with legislation. Implementing regulations, proper training, and education can help mitigate the negative impacts of pesticide use and promote safer and more sustainable agricultural practices.

2.
Antioxidants (Basel) ; 12(9)2023 Aug 28.
Article En | MEDLINE | ID: mdl-37759981

Nanotechnology holds significant ameliorative potential against neurodegenerative diseases, as it can protect the therapeutic substance and allow for its sustained release. In this study, the reducing and capping agents of Urtica dioica (UD), Matricaria chamomilla (MC), and Murraya koenigii (MK) extracts were used to synthesize bio-mediated zinc oxide nanoparticles (ZnO-NPs) against bacteria (Staphylococcus aureus and Escherichia coli) and against rotenone-induced toxicities in D. melanogaster for the first time. Their optical and structural properties were analyzed via FT-IR, DLS, XRD, EDS, SEM, UV-Vis, and zeta potential. The antioxidant and antimicrobial properties of the fabricated ZnO-NPs were evaluated employing cell-free models (DPPH and ABTS) and the well diffusion method, respectively. Rotenone (500 µM) was administered to Drosophila third instar larvae and freshly emerged flies for 24-120 h, either alone or in combination with plant extracts (UD, MC, an MK) and their biogenic ZnO-NPs. A comparative study on the protective effects of synthesized NPs was undertaken against rotenone-induced neurotoxic, cytotoxic, and behavioral alterations using an acetylcholinesterase inhibition assay, dye exclusion test, and locomotor parameters. The findings revealed that among the plant-derived ZnO-NPs, MK-ZnO NPs exhibit strong antimicrobial and antioxidant activities, followed by UD-ZnO NPs and MC-ZnO NPs. In this regard, ethno-nano medicinal therapeutic uses mimic similar effects in D. melanogaster by suppressing oxidative stress by restoring biochemical parameters (AchE and proteotoxicity activity) and lower cellular toxicity. These findings suggest that green-engineered ZnO-NPs have the potential to significantly enhance outcomes, with the promise of effective therapies for neurodegeneration, and could be used as a great alternative for clinical development.

3.
Int J Food Microbiol ; 388: 110069, 2023 Mar 02.
Article En | MEDLINE | ID: mdl-36640563

Microorganisms have been extensively studied and used to produce a wide range of enzymes and bioactive substances for a number of uses. Cellulases have also been widely used for a variety of bioprocessing and biotransformation purposes and are acknowledged as the essential enzymes for industrial applications. Broad industrial applications and huge demand essentially require mass-scale and low-cost production of cellulase enzyme. Nevertheless, low-cost production of cellulase enzyme at industrial-level finds certain issues, and this may be mainly associated with the unavailability of cheap and effective substrate to be utilized in fermentation process. In this context, cellulosic wastes are counted as one of the suitable bioresources and have been well explored for low-cost and highly efficient cellulase enzyme productions. Further, banana peels waste is considered as the high cellulose & sugar containing food wastes which is renewable and hugely available worldwide. Therefore, the present review explores the possible utilizations of banana peels as a potential food waste to be employed as substrate to produce cellulase enzymes. Availability and compositional analysis of banana peels has been explored for the microbial cellulase production based on reported studies. Further, this review explores the applications of cellulase enzymes as antimicrobial agents. Based on the available studies and their evaluation, potential limitations and future suggestions for the production of cellulase enzymes and their applications as antibacterial agents have been provided, which have a high potential for numerous biomedical applications and may offer a new opportunity for industrial utility.


Anti-Infective Agents , Cellulase , Cellulases , Musa , Refuse Disposal , Cellulase/metabolism , Musa/metabolism , Food , Cellulases/metabolism , Fermentation
...