Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PeerJ ; 11: e16461, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38034871

RESUMEN

Environmental factors like temperature have a great impact on the predation potential of biological control agents. In the present study, the functional response of the predatory mite Neoseiulus californicus (Acari: Phytoseiidae) to the pest mite Tetranychus urticae (Acari: Tetranychidae) at moderate to high temperatures under laboratory conditions was determined. The study aimed to understand the prey-predator interaction under different temperatures and prey densities. Five constant temperatures (24 °C, 27 °C, 30 °C, 33 °C, and 36 °C), and thirteen prey densities (4, 5, 8, 10, 12, 15, 16, 20, 24, 25, 30, 32, and 40) of each stage (adult, nymph, larvae, and egg stage) were employed in the experiment. Observations were made 24 h after the start of each experiment. Results revealed that the predatory mites showed type II functional response to adult females of T. urticae, whereas type I to other stages (nymphs, larvae, and eggs) of T. urticae. The predation capability of adult predatory mites on T. urticae was significant at 24-36 °C. The instantaneous attack rate (a) of N. californicus increased and the handling time (Th) decreased with an increase in temperature. The maximum attack rate was recorded at 36 °C (1.28) for the egg stage. The longest handling time was (0.78) for the larval stage of T. urticae at 30 °C. Daily consumption increased with increasing prey density. Maximum daily consumption was observed at 33 °C (30.00) at the prey density of 40. Searching efficiency decreased with the increase in prey density but was found to increase with the rise in temperature. N. californicus was found to be voracious on the larval and egg stages. Conclusively, the incorporation of N. californicus at earlier stages (larvae and eggs) of T. urticae would be beneficial under warm conditions because managing a pest at its initial stage will save the crop from major losses. The results presented in this study at various temperatures will be helpful in different areas with different temperature extremes. The results of the functional response can also be applied to mass rearing, quality testing, and integrated pest management programmes.


Asunto(s)
Ácaros , Tetranychidae , Animales , Femenino , Tetranychidae/fisiología , Temperatura , Ácaros/fisiología , Larva , Conducta Predatoria/fisiología , Ninfa
2.
BMC Genomics ; 23(1): 652, 2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36104767

RESUMEN

BACKGROUND: Multiprotein bridging factor 1 (MBF1) is a crucial transcriptional coactivator in animals, plants, and some microorganisms, that plays a necessary role in growth development and stress tolerance. Zanthoxylum armatum is an important perennial plant for the condiments and pharmaceutical industries, whereas the potential information in the genes related to stress resistance remains poorly understood in Z. armatum.  RESULTS: Herein, six representative species were selected for use in a genome-wide investigation of the MBF1 family, including Arabidopsis thaliana, Oryza sativa, Populus trichocarpa, Citrus sinensis, Ginkgo biloba, and Z. armatum. The results showed that the MBF1 genes could be divided into two groups: Group I contained the MBF1a and MBF1b subfamilies, and group II was independent of the MBF1c subfamily.. Most species have at least two different MBF1 genes, and MBF1c is usually an essential member. The three ZaMBF1 genes were respectively located on ZaChr26, ZaChr32, and ZaChr4 of Zanthoxylum chromosomes. The collinearity were occurred between three ZaMBF1 genes, and ZaMBF1c showed the collinearity between Z. armatum and both P. trichocarpa and C. sinensis. Moreover, many cis-elements associated with abiotic stress and phytohormone pathways were detected in the promoter regions of MBF1 of six representative species. The ERF binding sites were the most abundant targets in the sequences of the ZaMBF1 family, and some transcription factor sites related to floral differentiation were also identified in ZaMBF1c, such as MADS, LFY, Dof, and AP2. ZaMBF1a was observed to be very highly expressed in 25 different samples except in the seeds, and ZaMBF1c may be associated with the male and female floral initiation processes. In addition, expression in all the ZaMBF1 genes could be significantly induced by water-logging, cold stress, ethephon, methyl jasmonate, and salicylic acid treatments, especially in ZaMBF1c. CONCLUSION: The present study carried out a comprehensive bioinformatic investigation related to the MBF1 family in six representative species, and the responsiveness of ZaMBF1 genes to various abiotic stresses and phytohormone inductions was also revealed. This work not only lays a solid foundation to uncover the biological roles of the ZaMBF1 family in Z. armatum, but also provides some broad references for conducting the MBF1 research in other plants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Zanthoxylum , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Reguladores del Crecimiento de las Plantas/farmacología , Proteínas de Plantas/metabolismo , Transactivadores/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Zanthoxylum/genética , Zanthoxylum/metabolismo
3.
PeerJ ; 10: e13151, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35539011

RESUMEN

The interaction of warming and soil texture on responsiveness of the key soil processes i.e. organic carbon (C) fractions, soil microbes, extracellular enzymes and CO2 emissions remains largely unknown. Global warming raises the relevant question of how different soil processes will respond in near future, and what will be the likely regulatory role of texture? To bridge this gap, this work applied the laboratory incubation method to investigate the effects of temperature changes (10-50 °C) on dynamics of labile, recalcitrant and stable C fractions, soil microbes, microbial biomass, activities of extracellular enzymes and CO2 emissions in sandy and clayey textured soils. The role of texture (sandy and clayey) in the mitigation of temperature effect was also investigated. The results revealed that the temperature sensitivity of C fractions and extracellular enzymes was in the order recalcitrant C fractions > stable C fractions > labile C fractions and oxidative enzymes > hydrolytic enzymes. While temperature sensitivity of soil microbes and biomass was in the order bacteria > actinomycetes > fungi ≈ microbial biomass C (MBC) > microbial biomass N (MBN) > microbial biomass N (MBP). Conversely, the temperature effect and sensitivity of all key soil processes including CO2 emissions were significantly (P < 0.05) higher in sandy than clayey textured soil. Results confirmed that under the scenario of global warming and climate change, soils which are sandy in nature are more susceptible to temperature increase and prone to become the CO2-C sources. It was revealed that clayey texture played an important role in mitigating and easing off the undue temperature influence, hence, the sensitivity of key soil processes.


Asunto(s)
Dióxido de Carbono , Suelo , Dióxido de Carbono/análisis , Carbono , Temperatura , Microbiología del Suelo , Arcilla , Arena
4.
PLoS One ; 17(2): e0262961, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35120155

RESUMEN

Farmland conversion to forest is considered to be one of the effective measures to mitigate climate change. However, the impact of farmland conversion to forest land or grassland on soil CO2 emission in arid areas is unclear due to the lack of comparative information on soil organic carbon (SOC) mineralization of different conversion types. The SOC mineralization in 0-100 cm soil layer in farmland (FL), abandoned land (AL) and different ages (including 8, 15, 20 and 28 years) of Zanthoxylum bungeanum plantations were measured by laboratory incubation. The size and decomposition rate of fast pool (Cf) and slow pool (Cs) in different land-use types and soil layers were estimated by double exponential model. The results showed that: 1) Farmland conversion increased the cumulative CO2-C release (Cmin) and SOC mineralization efficiency, and those indexes in AL were higher than that in Z. bungeanum plantations. The Cmin and SOC mineralization efficiency of 0-100 cm soil increased with the ages of Z. bungeanum plantation. Both Cmin and SOC mineralization efficiency decreased with the increase of soil depth; 2) Both soil Cf and Cs increased after farmland converted to Z. bungeanum plantations and AL. The Cs in the same soil layer increased with the ages of Z. bungeanum plantation, and the Cf showed a "V" type with the increased ages of Z. bungeanum plantation. The Cf and Cs decreased with the increase of soil depth in all land-use types; 3) Farmland conversion increased the decomposition rate of Cf (k1) in all soil layer by 0.008-0.143 d-1 and 0.082-0.148 d-1 in Z. bungeanum plantations and AL, respectively. The k1 was obviously higher in the 0-20 cm soil layer than that in other soil layers, while the decomposition rate of Cs (k2) was not affected by FL conversion and soil depth; and 4) The initial soil chemical properties and enzyme activity affected SOC mineralization, especially the concentrations of total organic nitrogen (TON), SOC, easily oxidizable organic carbon (EOC) and microbial biomass carbon (MBC). It indicated that the conversion of farmland to Z. bungeanum plantations and AL increases SOC mineralization, especially in deeper soils, and it increased with the ages. The conversion of farmland to Z. bungeanum plantation is the optimal measure when the potential C sequestration of plant-soil system were taken in consideration.


Asunto(s)
Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...