Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Photodiagnosis Photodyn Ther ; 42: 103532, 2023 Jun.
Article En | MEDLINE | ID: mdl-36963645

BACKGROUND: Surface-enhanced Raman spectroscopy (SERS) is an efficient technique which has been used for the analysis of filtrate portions of serum samples of Hepatitis B (HBV) and Hepatitis C (HCV) virus. OBJECTIVES: The main reason for this study is to differentiate and compare HBV and HCV serum samples for disease diagnosis through SERS. Hepatitis B and hepatitis C disease biomarkers are more predictable in their centrifuged form as compared in their uncentrifuged form. For differentiation of SERS spectral data sets of hepatitis B, hepatitis C and healthy person principal component analysis (PCA) proved to be a helpful. Centrifugally filtered serum samples of hepatitis B and hepatitis C are clearly differentiated from centrifugally filtered serum samples of healthy individuals by using partial least square discriminant analysis (PLS-DA). METHODOLOGY: Serum sample of HBV, HCV and healthy patients were centrifugally filtered to separate filtrate portion for studying biochemical changes in serum sample. The SERS of these samples is performed using silver nanoparticles as substrates to identify specific spectral features of both viral diseases which can be used for the diagnosis and differentiation of these diseases. The purpose of centrifugal filtration of the serum samples of HBV and HCV positive and control samples by using filter membranes of 50 KDa size is to eliminate the proteins bigger than 50 KDa so that their contribution in the SERS spectrum is removed and disease related smaller proteins may be observed. Principal component analysis (PCA) and partial least square discriminant analysis (PLS-DA) are statistical tools which were used for the further validation of SERS. RESULTS: HBV and HCV centrifugally filtered serum sample were compared and biomarkers including (uracil, phenylalanine, methionine, adenine, phosphodiester, proline, tyrosine, tryptophan, amino acid, thymine, fatty acid, nucleic acid, triglyceride, guanine and hydroxyproline) were identified through PCA and PLS-DA. Principal component analysis (PCA) and partial least square discriminant analysis (PLS-DA) were used as a multivariate data analysis tool for the diagnosis of the characteristic SERS spectral features associated with both types of viral diseases. For the classification and differentiation of centrifugally filtered HBV, HCV, and control serum samples, Principal component analysis is found helpful. Moreover, PLS-DA can classify these two distinct sets of SERS spectral data with 0.90 percent specificity, 0.85 percent precision, and 0.83 percent accuracy. CONCLUSIONS: Surface enhanced Raman spectroscopy along with chemometric analysis like PCA and PLS-DA have been successfully differentiated HBV and HCV and healthy individuals' serum samples.


Hepatitis B , Hepatitis C , Metal Nanoparticles , Photochemotherapy , Humans , Metal Nanoparticles/chemistry , Silver/chemistry , Photochemotherapy/methods , Photosensitizing Agents , Discriminant Analysis , Hepatitis C/diagnosis , Spectrum Analysis, Raman/methods , Hepatitis B/diagnosis , Principal Component Analysis
2.
Photodiagnosis Photodyn Ther ; 41: 103262, 2023 Mar.
Article En | MEDLINE | ID: mdl-36587860

BACKGROUND: Surface Enhanced Raman Spectroscopy (SERS) is a very promising and fast technique for studying drugs and for detecting chemical nature of a molecule and DNA interaction. In the current study, SERS is employed to check the interaction of different concentrations of n-propyl imidazole derivative ligand with salmon sperm DNA using silver nanoparticles as SERS substrates. OBJECTIVES: Multivariate data analysis technique like principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) are employed for the detailed analysis of the SERS spectral features associated with the mode of action of the imidazole derivative ligand with DNA. METHODOLOGY: Silver nanoparticles were used as a SERS substrate in DNA-drug interaction. Five different concentrations of ligands were interacted with DNA and mix with Ag-NPs as substrate. The SERS spectra of were acquired for all seven samples and processed using MATLAB. Additionally, PCA and PLS-DA were used to assessed the ability SERS to differentiate interaction of DNA-drug. RESULTS: Differentiating SERS features having changes in their peak position and intensities are observed including 629, 655, 791, 807, 859, 1337, 1377 and 1456 cm-1. These SERS features reveal that binding of ligand with DNA is electrostatic in nature, and have specificity to major groove where it forms GC-CG interstrand cross-linking with the DNA double helix. CONCLUSIONS: SERS give significant information regarding to Drug-DNA interaction mechanism, SERS spectra inferred the mode of action of anticancer compound that are imidazole in nature.


Metal Nanoparticles , Photochemotherapy , Animals , Male , Spectrum Analysis, Raman/methods , Metal Nanoparticles/chemistry , Silver/chemistry , Salmon , Ligands , Semen , Photochemotherapy/methods , Photosensitizing Agents , Imidazoles
3.
Photodiagnosis Photodyn Ther ; 41: 103278, 2023 Mar.
Article En | MEDLINE | ID: mdl-36627069

BACKGROUND: Sinusitis is defined as inflammation of the paranasal sinus mucous membrane lining caused by bacteria which usually invade the sinus by upper respiratory tract viral infections (UTI). OBJECTIVES: In the present study, Surface-enhanced Raman spectroscopy (SERS) has been applied to differentiate and characterize supernatant samples, in triplicate, of three different types of bacteria which are considered leading cause of sinusitis disease. METHODS: For this purpose, supernatant samples of three different strains of bacteria namely Staphylococcus aureus, Klebsiella pneumoniae and Enterococcus faecalis. The SERS has identified significant changes as a result of secretions of biomolecules by these bacteria in their supernatants which can be helpful to explore the potential of this technique for the identification and characterization of different strains of bacteria causing same disease. RESULTS: These differentiating characteristic SERS spectral features including 552 cm-1 (C-S-S-C bonds), 951 cm-1 (CN stretching), 1008 cm-1 (Phenylalanine), 1032 cm-1 (In plane CH bending mode Phenylalanine), 1280 cm-1, 1320 cm-1, 1329 cm-1 (Amide III band), 1368 cm-1, 1400 cm-1, 1420 cm-1 (COO-sym. stretching and CH bending), 1583 cm-1 (Tyrosine) correspond to Proteins and 1051 cm-1 (C-C, C-O, -C-OH def.) correspond to carbohydrates contents of these three different types of bacterial secretions in their respective supernatants. Furthermore, multivariate data analysis techniques like principal component analysis (PCA) and a supervised method partial least squares-discriminant analysis (PLS-DA) were found to be useful for the identification and characterization of different bacterial supernatants. CONCLUSIONS: Surface-enhanced Raman spectroscopy is proven to be a helpful approach for the characterization and discrimination of three bacterial supernatants including S. aureus, K. pneumonia and E. faecalis.


Photochemotherapy , Respiratory Tract Infections , Sinusitis , Humans , Spectrum Analysis, Raman/methods , Staphylococcus aureus , Photochemotherapy/methods , Photosensitizing Agents , Bacteria
4.
Spectrochim Acta A Mol Biomol Spectrosc ; 285: 121903, 2023 Jan 15.
Article En | MEDLINE | ID: mdl-36209714

Surface-enhanced Raman spectroscopy (SERS) is used to identify the biochemical changes associated with the antifungal activities of selenium and zinc organometallic complexes against Aspergillus niger fungus. These biochemical changes identified in the form of SERS peaks can help to understand the mechanism of action of these antifungal agents which is important for development of new antifungal drugs. The SERS spectral changes indicate the denaturation and conformational changes of proteins and fungal cell wall decomposition in complex exposed fungal samples. The SERS spectra of these organometallic complexes exposed fungi are analyzed by using statistical tools like principal component analysis (PCA) and partial least square discriminant analysis (PLS-DA). PCA is employed to differentiate the SERS spectra of fungal samples exposed to ligands and complexes. The PLS-DA discriminated different groups of spectra with 99.8% sensitivity, 100% specificity, 98% accuracy and 86 % area under receiver operating characteristic (AUROC) curve.


Organometallic Compounds , Selenium , Antifungal Agents/pharmacology , Selenium/pharmacology , Zinc/pharmacology , Spectrum Analysis, Raman/methods , Discriminant Analysis , Principal Component Analysis
...