Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 16 de 16
1.
Environ Pollut ; 343: 123226, 2024 Feb 15.
Article En | MEDLINE | ID: mdl-38159638

Azo dyes, the most common synthetic dyes used in the textile industry, are known xenobiotic compounds and recalcitrant to conventional degradation treatments. As consequence, such contaminants are often discharged into the effluents, treating aquatic ecosystems. Among several processes, the use of zero valent iron (ZVI) represents a suitable alternative to degrade organic molecules containing azo bonds. However, its applications are limited by corrosion and loss of reactivity over the time. To overcome these constraints, ZVI has been coupled to a suitable semiconductor (ZnS) to get a catalytic composite (ZVI-ZnS) active under UV light. The present work deals with the degradation of acid orange (AO7), used as model azo dye, by UV/ZVI-ZnS, as one step treatment and in combination with an adsorption process by biochar. The influence of ZVI-ZnS concentration (0.25, 0.5, 1 and 2 g/L) and reaction time (0-160 min) on degradation of AO7 were investigated. Intermediates formation was monitored by ESI-FT-ICR-MS analysis and the effluent toxicity was assessed by using Artemia franciscana. The experimental results showed that the UV/ZVI-ZnS process at 1 g/L of catalyst allowed to achieve a removal of AO7 up to 97% after 10 min. An increase of the dye relative concentrations as well as the toxicity related to intermediates formations has been observed for treatment time higher than 10 min. The total removal of AO7 together with effluent toxicity reduction was obtained only after the combined treatment (UV/ZVI-ZnS + biochar).


Charcoal , Iron , Water Pollutants, Chemical , Iron/chemistry , Azo Compounds/chemistry , Ecosystem , Ultraviolet Rays , Water Pollutants, Chemical/analysis , Coloring Agents/toxicity , Coloring Agents/chemistry
2.
Nanomaterials (Basel) ; 13(24)2023 Dec 13.
Article En | MEDLINE | ID: mdl-38133027

Heterogeneous photocatalysis is a promising technique for removing pollutants from water. In this work, supercritical antisolvent (SAS)-micronized ZnO (ZnOSAS) is coupled with commercial anatase TiO2 (PC50) to study the photocatalytic degradation of ceftriaxone under UV and visible light. Diffuse ultraviolet-visible reflectance (UV-vis DRS) measurement revealed that the presence of ZnO leads to a slight absorption in the visible region. Wide-angle X-ray diffraction (WAXD) analysis showed the presence of both ZnO wurtzite and TiO2 anatase crystalline phases in the composite. Photocatalytic tests proved that the activity of the ZnOSAS/PC50 composite is higher than that of commercial ZnO, SAS-micronized ZnO, and PC50, allowing complete ceftriaxone degradation under UV light after only 2 min of irradiation time. In contrast, about 90% of ceftriaxone degradation is achieved after 180 min of visible-light irradiation. The photocatalytic results for an experiment carried out in the presence of probe scavenger molecules for reactive oxygen species show that hydroxyl radicals and positive holes are both reactive species involved in the ceftriaxone photocatalytic degradation mechanism. Finally, reuse cycles of the ZnOsas/PC50 composite are performed, demonstrating the stability and recyclability of the photocatalyst.

3.
Photochem Photobiol Sci ; 22(6): 1223-1231, 2023 Jun.
Article En | MEDLINE | ID: mdl-36656508

In this study, P-doped TiO2 photocatalysts with different molar percentages (in the range 0.071-1.25 mol %) of the non-metallic element were prepared and their photocatalytic activity under visible light irradiation was tested. All achieved samples were characterized by XRD, Raman, UV-Vis DRS and SEM-EDX techniques. XRD and Raman analysis showed that all doped photocatalysts were in anatase phase and evidenced that P ions were successfully incorporated into the TiO2 crystal lattice, affecting also the crystallinity degree of the P-doped TiO2 photocatalysts. Noticeably, the UV-Vis DRS spectra evidenced that the highest redshift in absorption edge was observed for the photocatalyst with the lowest P content (0.071PT), which showed also the lowest bandgap (2.9 eV). The photocatalytic performances of all P-doped TiO2 samples were compared with that of commercial TiO2 by evaluating the decolorization of methylene blue (MB) dye under visible light irradiation. Results showed that phosphorus doping strongly promoted photocatalytic activity in the presence of visible light. Furthermore, the most active photocatalyst in visible light tests (0.071PT) also showed better photocatalytic activity than commercial TiO2 in the decolorization of MB under simulated sunlight irradiation. Finally, 0.071PT photocatalyst was preliminarily tested against Escherichia coli (E. coli) under simulated solar light, showing an inactivation efficiency of 90% after 2 h of treatment time.


Escherichia coli , Light , Escherichia coli/radiation effects , Catalysis , Titanium/chemistry , Methylene Blue
4.
Nanomaterials (Basel) ; 13(2)2023 Jan 08.
Article En | MEDLINE | ID: mdl-36678023

A reverse-micelle sol-gel method was chosen for the preparation of Fe-doped TiO2 samples that were employed in the photodegradation of the crystal violet dye under visible light irradiation in a batch reactor. The dopant amount was varied to assess the optimal photocatalyst composition towards the target dye degradation. The photocatalysts were characterized through a multi-technique approach, envisaging XRPD and QPA as obtained by Rietveld refinement, FE-SEM analysis, DR UV-vis spectroscopy, N2 adsorption/desorption isotherms measurement at -196 °C, ζ-potential measurement, and XPS analysis. The physical-chemical characterization showed that the adopted synthesis method allows obtaining NPs with uniform shape and size and promotes the introduction of Fe into the titania matrix, finally affecting the relative amounts of the three occurring polymorphs of TiO2 (anatase, rutile and brookite). By increasing the Fe content, the band gap energy decreases from 3.13 eV (with undoped TiO2) to 2.65 eV (with both 2.5 and 3.5 wt.% nominal Fe contents). At higher Fe content, surface Fe oxo-hydroxide species occur, as shown by DR UV-vis and XP spectroscopies. All the Fe-doped TiO2 photocatalysts were active in the degradation and mineralization of the target dye, showing a TOC removal higher than the undoped sample. The photoactivity under visible light was ascribed both to the band-gap reduction (as confirmed by phenol photodegradation) and to dye sensitization of the photocatalyst surface (as confirmed by photocatalytic tests carried out using different visible-emission spectra LEDs). The main reactive species involved in the dye degradation were determined to be positive holes.

5.
Polymers (Basel) ; 15(2)2023 Jan 10.
Article En | MEDLINE | ID: mdl-36679240

In recent years, aromatic substances have become the focus of environmental pollution-related concern due to their high stability and mutagenicity. In this regard, researchers have focused their attention on the development of photocatalytic processes to convert nitroaromatic compounds into aniline. In this work, the photocatalytic conversion of nitrobenzene (NB) to aniline (AN) was studied. The photocatalytic reaction was performed using commercial TiO2 (P25) and a photocatalytic aerogel, based on P25 embedded in syndiotactic polystyrene (sPS) aerogel (sPS/P25 aerogel) as photocatalysts. Different alcohols were used as hydrogen sources during the photocatalytic experiments. At the optimized operating conditions (photocatalysts dosage: 0.5 mg/L and 50% (v/v) EtOH%), an AN yield of over 99% was achieved. According to the results, this work could open avenues toward effective production of AN from NB using mild reaction conditions with sPS/P25 aerogel-in view of a possible scale-up of the photocatalytic process.

6.
Photochem Photobiol Sci ; 22(1): 185-193, 2023 Jan.
Article En | MEDLINE | ID: mdl-36181659

The impact of light modulation on the decolorization of Acid Orange 7 (AO7) in aqueous solution was examined in this paper. A fixed bed batch photocatalytic reactor with a flat plate geometry, irradiated by 240 white-light LEDs, was used. A successful transfer of visible active photocatalyst (N-TiO2) in powder form on a polystyrene (PS) transparent plate was realized. The structured photocatalyst was characterized through SEM-EDX, Raman and UV-DRS analyses, evidencing the formation of a coating of N-TiO2 in the anatase phase, with a band-gap energy of 2.5 eV, and almost uniform distribution on the PS surface. Different LED dimming techniques, with fixed and variable duty-cycle values, were tested, and four types of light modulation were compared: fixed duty cycle (constant irradiation), sinusoidal variable duty cycle (sinusoidal variable irradiation), triangular variable duty cycle (triangular variable irradiation), and square wave variable duty cycle (square wave variable irradiation). The resulting responsiveness/efficiency of the LED versus the current intensity was evaluated, and the stability of the photocatalyst activity and the influence of optimized irradiation waveforms were examined in the decolorization of 400 mL of 10 ppm AO7 solution. The sinusoidal modulation, with current between 50 and 100 mA and 10 s as the period, shows the highest value of the apparent pseudo-first-order kinetic constant, resulting equal to 0.0044 min-1, at parity of total transmitted photons. An energy saving with the application of sinusoidal irradiation is highlighted with respect to the literature.


Light , Titanium , Titanium/chemistry , Azo Compounds/chemistry , Catalysis
7.
J Phys Chem C Nanomater Interfaces ; 126(6): 3180-3193, 2022 Feb 17.
Article En | MEDLINE | ID: mdl-36844196

Density Functional Theory (DFT) calculations have been performed to investigate the structural and electronic properties of the ZnO(wurtzite)-ATiO2(anatase) heterojunction in the absence and presence of substitutional, interstitial nitrogen (N) doping and oxygen vacancies (OV). We report a detailed study of the interactions between the two nonpolar ZnO and TiO2 surfaces and on the role of N-doping and oxygen vacancies, which are decisive for improving the photocatalytic activity of the heterojunction. Our calculations show that substitutional N-doping is favored in the ATiO2 portion, whereas the interstitial one is favored in the ZnO region of the interface. Both substitutional and interstitial N-doped sites (i) induce gap states that act as deep electronic traps improving the charge separation and delaying electron-hole recombination, (ii) facilitate the OV formation causing a decrease in the formation energy (E FORM), and (iii) do not affect the band alignment when compared to the undoped analogue system. The presented results shed light on the N-doping effect on the electronic structure of the ZnO(100)-TiO2(101) heterojunction and how N-doping improves its photocatalytic properties.

8.
Materials (Basel) ; 14(11)2021 Jun 05.
Article En | MEDLINE | ID: mdl-34198890

Fe-doped titania photocatalysts (with 1, 2.5, and 3.5 wt. % Fe nominal content), showing photocatalytic activity under visible light, were prepared by a soft-template assisted sol-gel approach in the presence of the triblock copolymer Pluronic P123. An undoped TiO2 photocatalyst was also prepared for comparison. The photocatalysts were characterized by means of X-ray powder Diffraction (XRPD), Quantitative Phase Analysis as obtained by Rietveld refinement, Diffuse Reflectance (DR) UV-Vis spectroscopy, N2 adsorption/desorption at -196 °C, electrophoretic mobility in water (ζ-potential), and X-ray photoelectron spectroscopy (XPS). The physico-chemical characterization showed that all the samples were 100% anatase phase and that iron was present both in the bulk and at the surface of the Fe-doped TiO2. Indeed, the band gap energy (Eg) decreases with the Fe content, with Tauc's plot determined values ranging from 3.35 (undoped TiO2) to 2.70 eV (3.5 wt. % Fe). Notwithstanding the obtained Eg values, the photocatalytic activity results under visible light highlighted that the optimal Fe content was equal to 2.5 wt. % (Tauc's plot determined Eg = 2.74 eV). With the optimized photocatalyst and in selected operating conditions, under visible light it was possible to achieve 90% AO7 discoloration together with a TOC removal of 40% after 180 min. The kinetic behavior of the photocatalyst was also analyzed. Moreover, the tests in the presence of three different scavengers revealed that the main reactive species are (positive) holes and superoxide species. Finally, the optimized photocatalyst was also able to degrade phenol under visible light.

9.
Molecules ; 26(9)2021 Apr 30.
Article En | MEDLINE | ID: mdl-33946498

Conventional methods generally used to synthesize heterogeneous photocatalysts have some drawbacks, mainly the difficult control/preservation of catalysts' morphology, size or structure, which strongly affect the photocatalytic activity. Supercritical carbon dioxide (scCO2)-assisted techniques have recently been shown to be a promising approach to overcome these limitations, which are still a challenge. In addition, compared to traditional methods, these innovative techniques permit the synthesis of high-performance photocatalysts by reducing the use of toxic and polluting solvents and, consequently, the environmental impact of long-term catalyst preparation. Specifically, the versatility of scCO2 allows to prepare catalysts with different structures (e.g., nanoparticles or metal-loaded supports) by several supercritical processes for the photocatalytic degradation of various compounds. This is the first updated review on the use of scCO2-assisted techniques for photocatalytic applications. We hope this review provides useful information on different approaches and future perspectives.

10.
Polymers (Basel) ; 13(5)2021 Feb 28.
Article En | MEDLINE | ID: mdl-33671064

Polypropylene oxide (PPO) and poly(9-(2,3-epoxypropyl) carbazole) (PEPK) di-block copolymers are prepared in one pot via sequential monomer addition by using i-PrONa/i-Bu3Al as an anionic catalytic system. An almost 100% monomer conversion is obtained, and the length of each block is controlled through the monomer/catalyst ratio used. Copolymer molecular weights are quite close to theoretical values calculated assuming the formation of one polymer chain per catalyst; therefore, it is hypothesized that the polymerization reaction proceeds with a living character. The synthesis appears to be particularly efficient and versatile. The calorimetric properties of copolymers obtained in this work are remarkable, since they show two distinct Tg values, corresponding to the PPO and PEPK blocks. The optical measurements of di-block copolymers show more analogous features than those of PEPK homopolymer. Copolymer solution emission spectra just exhibit isolated carbazole fluorescence, whereas in the solid state, film spectra show excimer fluorescence.

11.
Nanomaterials (Basel) ; 9(11)2019 Oct 23.
Article En | MEDLINE | ID: mdl-31652789

Highly porous monolithic aerogels based on ZnO photocatalyst and syndiotactic polystyrene (s-PS) were obtained by supercritical CO2 treatment of ZnO/s-PS gels. The prepared aerogels were characterized and their photocatalytic activity was evaluated using phenol and toluene as water pollutant models. The s-PS nanoporous crystalline phase, able to absorb pollutant molecules, was proven to be necessary to ensure high photocatalytic efficiency as the aerogel acts not only as a support, but also as pollutant pre-concentrator. The reusability of ZnO/s-PS aerogels is also strong showing no decrease in photocatalytic activity after six consecutive degradation trials. Finally, the aerogel matrix prevents ZnO dissolution occurring under acidic conditions and promotes a selective removal of the pollutants. The synergy between the photocatalyst and the innovative polymeric support provides the composite system with robustness, chemical stability, easy recovery after treatment, high efficiency of pollutant removal with a marked selectivity which make these materials promising for large scale applications.

12.
Materials (Basel) ; 12(6)2019 Mar 19.
Article En | MEDLINE | ID: mdl-30893877

In this work, the influence of simple acids in the room temperature sol-gel synthesis of TiO2 was investigated and the efficiency of prepared photocatalysts was evaluated in the removal of caffeine. To improve the photoactivity of TiO2, vanadium-doped TiO2 (VTiO2) samples were obtained starting from different amount of vanadyl sulphate as a dopant source. The samples were centrifuged, washed and finally dried at room temperature, and no calcination step was carried out. The prepared photocatalysts were characterized by different techniques (X-ray powder diffraction (XRD), specific surface area (SSA), ultraviolet-visible diffuse reflectance spectra (UV-vis DRS) and Raman). VTiO2 photocatalysts were tested in the photocatalytic removal of aqueous solutions containing caffeine. The photocatalytic tests were carried out in a recirculating batch cylindrical photoreactor irradiated by a UV LEDs strip (nominal power of 12 W and wavelength emission peak at about 365 nm) surrounding the external surface of the reactor. The optimized VTiO2 photocatalyst was able to reach a caffeine degradation of about 96% after 360 min of UV light irradiation with a total organic carbon (TOC) removal of 72%.

13.
Sci Total Environ ; 644: 430-438, 2018 Dec 10.
Article En | MEDLINE | ID: mdl-29981993

A continuous flow micro-reactor irradiated by UV-LEDs was employed to treat coloured wastewater by adsorption and simultaneous photocatalysis. Zinc oxide (ZnO) immobilized on commercial zeolites pellets in spherical shape (ZEO) was used as catalytic material in a micro-reactor maximizing the photocatalyst exposition to light sources, irradiating uniformly the entire solution volume and improving the mass transfer phenomena. Experimental tests were carried out on crystal violet dye (CV) as one of the main dying agent present in textile wastewater. The comparison between adsorption and adsorption/photocatalytic tests showed that UV irradiation can achieve a steady state CV concentration value corresponding to an equilibrium condition between adsorption and photocatalytic oxidation. The higher removal efficiency (i.e. 93%) was observed with a liquid flow rate of 1.1 mL/min (contact time = 4.7 min; CV = 10 mg/L) under UV light irradiation. In the steady state, CV removal remained constant for the overall testing time. Bioassays evidenced that toxicity was not completely removed (i.e. final effluent ranked as "slight acute toxic") from wastewater suggesting its suitability for sewage collection discharge. A Dubinin Radushkevich (D-R) isotherm model was applied for studying the adsorption behaviour of ZnO/ZEO sample. CV adsorption constants were evaluated from experimental data carried out in dark conditions in a batch system. Kinetic expression of CV removal and the D-R adsorption were incorporated in the CV mass balance estimating the kinetic parameter. The model was validated comparing the calculated CV conversion with the experimental tests collected at different CV inlet concentration.

14.
J Environ Sci (China) ; 54: 268-276, 2017 Apr.
Article En | MEDLINE | ID: mdl-28391938

A novel visible light-active photocatalyst formulation (NdT/OP) was obtained by supporting N-doped TiO2 (NdT) particles on up-conversion luminescent organic phosphors (OP). The photocatalytic activity of such catalysts was evaluated for the mineralization process of spiramycin in aqueous solution. The effect of NdT loading in the range 15-60wt.% on bulk and surface characteristics of NdT/OP catalysts was investigated by several chemico-physical characterization techniques. The photocatalytic performance of NdT/OP catalysts in the removal of spyramicin from aqueous solution was assessed through photocatalytic tests under visible light irradiation. Total organic carbon (TOC) of aqueous solution, and CO and CO2 gas concentrations evolved during the photodegradation were analyzed. A dramatic enhancement of photocatalytic activity of the photostructured visible active NdT/OP catalysts, compared to NdT catalyst, was observed. Only CO2 was detected in gas-phase during visible light irradiation, proving that the photocatalytic process is effective in the mineralization of spiramycin, reaching very high values of TOC removal. The photocatalyst NdT/OP at 30wt.% of NdT loading showed the highest photocatalytic activity (58% of TOC removed after 180min irradiation against only 31% removal after 300min of irradiation of NdT). We attribute this enhanced activity to the high effectiveness in the utilization of visible light through improved light harvesting and exploiting. OP particles act as "photoactive support", able to be excited by the external visible light irradiation, and reissue luminescence of wavelength suitable to promote NdT photomineralization activity.


Anti-Bacterial Agents/chemistry , Nitrogen/chemistry , Spiramycin/chemistry , Titanium/chemistry , Water Pollutants, Chemical/chemistry , Kinetics , Light , Models, Chemical , Photolysis , Ultraviolet Rays
15.
Sci Total Environ ; 554-555: 1-6, 2016 Jun 01.
Article En | MEDLINE | ID: mdl-26945469

The release of antibiotics into the environment can result in antibiotic resistance (AR) spread, which in turn can seriously affect human health. Antibiotic resistant bacteria have been detected in different aquatic environments used as drinking water source. Water disinfection may be a possible solution to minimize AR spread but conventional processes, such as chlorination, result in the formation of dangerous disinfection by-products. In this study advanced oxidation processes (AOPs), namely H2O2/UV, TiO2/UV and N-TiO2/UV, have been compared with chlorination in the inactivation of an AR Escherichia coli (E. coli) strain in surface water. TiO2 P25 and nitrogen doped TiO2 (N-TiO2), prepared by sol-gel method at two different synthesis temperatures (0 and -20°C), were investigated in heterogeneous photocatalysis experiments. Under the investigated conditions, chlorination (1.0 mg L(-1)) was the faster process (2.5 min) to achieve total inactivation (6 Log). Among AOPs, H2O2/UV resulted in the best inactivation rate: total inactivation (6 Log) was achieved in 45 min treatment. Total inactivation was not observed (4.5 Log), also after 120 min treatment, only for N-doped TiO2 synthesized at 0°C. Moreover, H2O2/UV and chlorination processes were evaluated in terms of cytotoxicity potential by means of 3-(4,5-dime-thylthiazol-2-yl)-2,5-diphenylte-trazolium colorimetric test on a human-derived cell line and they similarly affected HepG2 cells viability.


Disinfection/methods , Escherichia coli/physiology , Water Purification/methods , Drug Resistance, Microbial , Halogenation , Hydrogen Peroxide , Oxidation-Reduction , Ultraviolet Rays
16.
Membranes (Basel) ; 3(3): 126-35, 2013 Jul 11.
Article En | MEDLINE | ID: mdl-24956941

The aim of this work is to design and integrate an optimized batch membrane process in a conventional purification process used for the treatment of tannery wastewater. The integration was performed by using two spiral wound membrane modules in series, that is, nanofiltration and reverse osmosis, as substitutes to the biological reactor. The membrane process was designed in terms of sensible fouling issues reduction, which may be observed on the nanofiltration membrane if no optimization is performed. The entity of the fouling phenomena was estimated by pressure cycling measurements, determining both the critical and the threshold flux on the nanofiltration membrane. The obtained results were used to estimate the need of the overdesign of the membrane plant, as well as to define optimized operating conditions in order to handle fouling issues correctly for a long period of time. Finally, the developed membrane process was compared, from a technical and economic point of view, with the conventional biological process, widely offered as an external service near tannery production sites, and, here, proposed to be substituted by membrane technologies.

...