Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 75
1.
Schizophr Bull ; 2024 Mar 24.
Article En | MEDLINE | ID: mdl-38522431

BACKGROUND: Psychosis spectrum disorders are characterized by significant alterations in social functioning, which is a major factor for patient recovery. Despite its importance, objectively quantifying the complex day-to-day social behavior in real-life settings has rarely been attempted. Here, we conducted a pilot study with wearable sensors that passively and continuously register interactions with other participants. We hypothesized that the amount and pattern of social interaction was associated with the severity of psychotic symptoms. STUDY DESIGN: We recruited 7 patients with psychosis spectrum disorders and 18 team members from a Soteria-style ward. Each participant wore a radio frequency identification badge, sending and receiving signals from nearby badges, allowing passive quantification of social interactions. In addition, symptom severity was assessed weekly by the Positive and Negative Syndrome Scale (PANSS). STUDY RESULTS: During an 11-week period, we identified 17 970 interactions among patients and staff. On average, patients spent 2.6 h per day interacting, capturing relevant aspects of daily social life. Relative daily interaction time, average interaction duration, and clustering coefficient, a measure of local network integration, were significantly associated with lower PANSS scores. Self-reported interaction time did not correlate with measured interaction time or with PANSS, indicating the importance of objective markers. CONCLUSIONS: This pilot study demonstrates the feasibility of passively recording social interaction of patients and staff at high resolution and for a long observation period in a real-life setting in a psychiatric department. We show links between quantified social interaction and psychopathology that may facilitate development and personalization of targeted treatments.

2.
Front Bioeng Biotechnol ; 11: 1180044, 2023.
Article En | MEDLINE | ID: mdl-37207124

SARS-CoV-2 infects human cells via binding of the viral spike glycoprotein to its main cellular receptor, angiotensin-converting enzyme 2 (ACE2). The spike protein-ACE2 receptor interaction is therefore a major target for the development of therapeutic or prophylactic drugs to combat coronavirus infections. Various engineered soluble ACE2 variants (decoys) have been designed and shown to exhibit virus neutralization capacity in cell-based assays and in vivo models. Human ACE2 is heavily glycosylated and some of its glycans impair binding to the SARS-CoV-2 spike protein. Therefore, glycan-engineered recombinant soluble ACE2 variants might display enhanced virus-neutralization potencies. Here, we transiently co-expressed the extracellular domain of ACE2 fused to human Fc (ACE2-Fc) with a bacterial endoglycosidase in Nicotiana benthamiana to produce ACE2-Fc decorated with N-glycans consisting of single GlcNAc residues. The endoglycosidase was targeted to the Golgi apparatus with the intention to avoid any interference of glycan removal with concomitant ACE2-Fc protein folding and quality control in the endoplasmic reticulum. The in vivo deglycosylated ACE2-Fc carrying single GlcNAc residues displayed increased affinity to the receptor-binding domain (RBD) of SARS-CoV-2 as well as improved virus neutralization activity and thus is a promising drug candidate to block coronavirus infection.

3.
Hum Brain Mapp ; 44(3): 1278-1282, 2023 02 15.
Article En | MEDLINE | ID: mdl-36399510

Continuous real-time functional magnetic resonance imaging (fMRI) neurofeedback is gaining increasing scientific attention in clinical neuroscience and may benefit from the short repetition times of modern multiband echoplanar imaging sequences. However, minimizing feedback delay can result in technical challenges. Here, we report a technical problem we experienced during continuous fMRI neurofeedback with multiband echoplanar imaging and short repetition times. We identify the possible origins of this problem, describe our current interim solution and provide openly available workflows and code to other researchers in case they wish to use a similar approach.


Echo-Planar Imaging , Neurofeedback , Humans , Echo-Planar Imaging/methods , Neurofeedback/methods , Magnetic Resonance Imaging/methods , Attention , Brain Mapping/methods , Brain/diagnostic imaging
4.
Int J Mol Sci ; 23(24)2022 Dec 08.
Article En | MEDLINE | ID: mdl-36555189

Dysfunctions of the thyroid hormone (TH) transporting monocarboxylate transporter MCT8 lead to a complex X-linked syndrome with abnormal serum TH concentrations and prominent neuropsychiatric symptoms (Allan-Herndon-Dudley syndrome, AHDS). The key features of AHDS are replicated in double knockout mice lacking MCT8 and organic anion transporting protein OATP1C1 (Mct8/Oatp1c1 DKO). In this study, we characterize impairments of brain structure and function in Mct8/Oatp1c1 DKO mice using multimodal magnetic resonance imaging (MRI) and assess the potential of the TH analogue 3,3',5-triiodothyroacetic acid (TRIAC) to rescue this phenotype. Structural and functional MRI were performed in 11-weeks-old male Mct8/Oatp1c1 DKO mice (N = 10), wild type controls (N = 7) and Mct8/Oatp1c1 DKO mice (N = 13) that were injected with TRIAC (400 ng/g bw s.c.) daily during the first three postnatal weeks. Grey and white matter volume were broadly reduced in Mct8/Oatp1c1 DKO mice. TRIAC treatment could significantly improve white matter thinning but did not affect grey matter loss. Network-based statistic showed a wide-spread increase of functional connectivity, while graph analysis revealed an impairment of small-worldness and whole-brain segregation in Mct8/Oatp1c1 DKO mice. Both functional deficits could be substantially ameliorated by TRIAC treatment. Our study demonstrates prominent structural and functional brain alterations in Mct8/Oatp1c1 DKO mice that may underlie the psychomotor deficiencies in AHDS. Additionally, we provide preclinical evidence that early-life TRIAC treatment improves white matter loss and brain network dysfunctions associated with TH transporter deficiency.


Mental Retardation, X-Linked , Symporters , White Matter , Animals , Male , Mice , White Matter/metabolism , Monocarboxylic Acid Transporters/genetics , Monocarboxylic Acid Transporters/metabolism , Thyroid Hormones/metabolism , Muscular Atrophy/metabolism , Mice, Knockout , Mental Retardation, X-Linked/drug therapy , Mental Retardation, X-Linked/genetics , Mental Retardation, X-Linked/metabolism , Symporters/genetics , Symporters/metabolism
5.
Nat Commun ; 13(1): 3305, 2022 06 08.
Article En | MEDLINE | ID: mdl-35676281

Identifying the circuits responsible for cognition and understanding their embedded computations is a challenge for neuroscience. We establish here a hierarchical cross-scale approach, from behavioral modeling and fMRI in task-performing mice to cellular recordings, in order to disentangle local network contributions to olfactory reinforcement learning. At mesoscale, fMRI identifies a functional olfactory-striatal network interacting dynamically with higher-order cortices. While primary olfactory cortices respectively contribute only some value components, the downstream olfactory tubercle of the ventral striatum expresses comprehensively reward prediction, its dynamic updating, and prediction error components. In the tubercle, recordings reveal two underlying neuronal populations with non-redundant reward prediction coding schemes. One population collectively produces stabilized predictions as distributed activity across neurons; in the other, neurons encode value individually and dynamically integrate the recent history of uncertain outcomes. These findings validate a cross-scale approach to mechanistic investigations of higher cognitive functions in rodents.


Reinforcement, Psychology , Ventral Striatum , Animals , Cerebral Cortex , Magnetic Resonance Imaging , Mice , Olfactory Tubercle , Reward , Ventral Striatum/diagnostic imaging
6.
Sci Rep ; 12(1): 10027, 2022 06 15.
Article En | MEDLINE | ID: mdl-35705669

High yield production of recombinant HIV SOSIP envelope (Env) trimers has proven elusive as numerous disulfide bonds, proteolytic cleavage and extensive glycosylation pose high demands on the host cell machinery and stress imposed by accumulation of misfolded proteins may ultimately lead to cellular toxicity. The present study utilized the Nicotiana benthamiana/p19 (N.b./p19) transient plant system to assess co-expression of two ER master regulators and 5 chaperones, crucial in the folding process, to enhance yields of three Env SOSIPs, single chain BG505 SOSIP.664 gp140, CH505TF.6R.SOSIP.664.v4.1 and CH848-10.17-DT9. Phenotypic changes in leaves induced by SOSIP expression were employed to rapidly identify chaperone-assisted improvement in health and expression. Up to 15-fold increases were obtained by co-infiltration of peptidylprolvl isomerase (PPI) and calreticulin (CRT) which were further enhanced by addition of the ER-retrieval KDEL tags to the SOSIP genes; levels depending on individual SOSIP type, day of harvest and chaperone gene dosage. Results are consistent with reducing SOSIP misfolding and cellular stress due to increased exposure to the plant host cell's calnexin/calreticulin network and accelerating the rate-limiting cis-trans isomerization of Xaa-Pro peptide bonds respectively. Plant transient co-expression facilitates rapid identification of host cell factors and will be translatable to other complex glycoproteins and mammalian expression systems.


HIV Infections , HIV-1 , Animals , Antibodies, Neutralizing/metabolism , Calreticulin/genetics , Calreticulin/metabolism , HIV Antibodies/metabolism , HIV-1/genetics , Mammals/metabolism , Peptidylprolyl Isomerase/metabolism , Protein Multimerization , env Gene Products, Human Immunodeficiency Virus/metabolism
7.
Mol Psychiatry ; 27(4): 2329-2339, 2022 04.
Article En | MEDLINE | ID: mdl-35246636

Silencing of dopamine transporter (DAT), a main controlling factor of dopaminergic signaling, results in biochemical and behavioral features characteristic for neuropsychiatric diseases with presumed hyperdopaminergia including schizophrenia, attention deficit hyperactivity disorder (ADHD), bipolar disorder, and obsessive-compulsive disorder (OCD). Investigation of DAT silencing thus provides a transdiagnostic approach towards a systems-level understanding of common underlying pathways. Using a high-field multimodal imaging approach and a highly sensitive cryogenic coil, we integrated structural, functional and metabolic investigations in tandem with behavioral assessments on a newly developed preclinical rat model, comparing DAT homozygous knockout (DAT-KO, N = 14), heterozygous knockout (N = 8) and wild-type male rats (N = 14). We identified spatially distributed structural and functional brain alterations encompassing motor, limbic and associative loops that demonstrated strong behavioral relevance and were highly consistent across imaging modalities. DAT-KO rats manifested pronounced volume loss in the dorsal striatum, negatively correlating with cerebellar volume increase. These alterations were associated with hyperlocomotion, repetitive behavior and loss of efficient functional small-world organization. Further, prefrontal and midbrain regions manifested opposite changes in functional connectivity and local network topology. These prefrontal disturbances were corroborated by elevated myo-inositol levels and increased volume. To conclude, our imaging genetics approach provides multimodal evidence for prefrontal-midbrain decoupling and striato-cerebellar neuroplastic compensation as two key features of constitutive DAT blockade, proposing them as transdiagnostic mechanisms of hyperdopaminergia. Thus, our study connects developmental DAT blockade to systems-level brain changes, underlying impaired action inhibition control and resulting in motor hyperactivity and compulsive-like features relevant for ADHD, schizophrenia and OCD.


Attention Deficit Disorder with Hyperactivity , Dopamine Plasma Membrane Transport Proteins , Animals , Attention Deficit Disorder with Hyperactivity/metabolism , Brain/metabolism , Dopamine Plasma Membrane Transport Proteins/genetics , Dopamine Plasma Membrane Transport Proteins/metabolism , Hyperkinesis/metabolism , Male , Mesencephalon/metabolism , Rats
8.
Nervenarzt ; 93(3): 288-296, 2022 Mar.
Article De | MEDLINE | ID: mdl-33674965

Mental disorders are widespread and a major public health problem. The risk of developing a mental disorder at some point in life is around 40%. Therefore, mental disorders are among the most common diseases. Despite the introduction of newer psychotropic drugs, disorder-specific psychotherapy and stimulation techniques, many of those affected still show insufficient symptom remission and a chronic course of the disorder. Conceptual and technological progress in recent years has enabled a new, more flexible and personalized form of mental health care. Both the traditional therapeutic concepts and newer decentralized, modularly structured, track units, together with innovative digital technologies, will offer individualized therapeutic options in order to alleviate symptoms and improve quality of life of patients with mental illnesses. The primary goal of closely combining inpatient care concepts with innovative technologies is to provide comprehensive therapy and aftercare concepts for all individual needs of patients with mental disorders. Last but not least, this also ensures that specialist psychiatric treatment is available regardless of location. In twenty-first century psychiatry, modern care structures must be effectively linked to the current dynamics of digital transformation. This narrative review is dedicated to the theoretical and practical aspects of a cross-sectoral treatment system combined with innovative digital technologies in the psychiatric-psychotherapeutic field. The authors aim to illuminate these therapy modalities using the example of the Central Institute of Mental Health in Mannheim.


Mental Disorders , Psychiatry , Humans , Mental Disorders/diagnosis , Mental Disorders/therapy , Mental Health , Psychotherapy , Quality of Life
9.
Brain Behav ; 12(1): e2442, 2022 01.
Article En | MEDLINE | ID: mdl-34878219

INTRODUCTION: Arterial spin labeling (ASL) is a functional neuroimaging technique that has been frequently used to investigate acute pain states. A major advantage of ASL as opposed to blood-oxygen-level-dependent functional neuroimaging is its applicability for low-frequency designs. As such, ASL represents an interesting option for studies in which repeating an experimental event would reduce its ecological validity. Whereas most ASL pain studies so far have used thermal stimuli, to our knowledge, no ASL study so far has investigated pain responses to sharp mechanical pain. METHODS: As a proof of concept, we investigated whether ASL has the sensitivity to detect brain activation within core areas of the nociceptive network in healthy controls following a single stimulation block based on 96 s of mechanical painful stimulation using a blunt blade. RESULTS: We found significant increases in perfusion across many regions of the nociceptive network such as primary and secondary somatosensory cortices, premotor cortex, posterior insula, inferior parietal cortex, parietal operculum, temporal gyrus, temporo-occipital lobe, putamen, and the cerebellum. Contrary to our hypothesis, we did not find any significant increase within ACC, thalamus, or PFC. Moreover, we were able to detect a significant positive correlation between pain intensity ratings and pain-induced perfusion increase in the posterior insula. CONCLUSION: We demonstrate that ASL is suited to investigate acute pain in a single event paradigm, although to detect activation within some regions of the nociceptive network, the sensitivity of our paradigm seemed to be limited. Regarding the posterior insula, our paradigm was sensitive enough to detect a correlation between pain intensity ratings and pain-induced perfusion increase. Previous experimental pain studies have proposed that intensity coding in this region may be restricted to thermal stimulation. Our result demonstrates that the posterior insula encodes intensity information for mechanical stimuli as well.


Cerebrovascular Circulation , Pain , Brain/physiology , Cerebrovascular Circulation/physiology , Humans , Magnetic Resonance Imaging/methods , Pain/diagnostic imaging , Parietal Lobe/physiology , Spin Labels
10.
Diagnostics (Basel) ; 11(11)2021 Nov 12.
Article En | MEDLINE | ID: mdl-34829439

Efforts to control SARS-CoV-2 have been challenged by the emergence of variant strains that have important implications for clinical and epidemiological decision making. Four variants of concern (VOCs) have been designated by the Centers for Disease Control and Prevention (CDC), namely, B.1.617.2 (delta), B.1.1.7 (alpha), B.1.351 (beta), and P.1 (gamma), although the last three have been downgraded to variants being monitored (VBMs). VOCs and VBMs have shown increased transmissibility and/or disease severity, resistance to convalescent SARS-CoV-2 immunity and antibody therapeutics, and the potential to evade diagnostic detection. Methods are needed for point-of-care (POC) testing to rapidly identify these variants, protect vulnerable populations, and improve surveillance. Antigen-detection rapid diagnostic tests (Ag-RDTs) are ideal for POC use, but Ag-RDTs that recognize specific variants have not yet been implemented. Here, we describe a mAb (2E8) that is specific for the SARS-CoV-2 spike protein N501 residue. The 2E8 mAb can distinguish the delta VOC from variants with the N501Y meta-signature, which is characterized by convergent mutations that contribute to increased virulence and evasion of host immunity. Among the N501Y-containing mutants formerly designated as VOCs (alpha, beta, and gamma), a previously described mAb, CB6, can distinguish beta from alpha and gamma. When used in a sandwich ELISA, these mAbs sort these important SARS-CoV-2 variants into three diagnostic categories, namely, (1) delta, (2) alpha or gamma, and (3) beta. As delta is currently the predominant variant globally, they will be useful for POC testing to identify N501Y meta-signature variants, protect individuals in high-risk settings, and help detect epidemiological shifts among SARS-CoV-2 variants.

11.
Neuroimage ; 243: 118520, 2021 11.
Article En | MEDLINE | ID: mdl-34455061

Copy number variations (CNV) involving multiple genes are ideal models to study polygenic neuropsychiatric disorders. Since 22q11.2 deletion is regarded as the most important single genetic risk factor for developing schizophrenia, characterizing the effects of this CNV on neural networks offers a unique avenue towards delineating polygenic interactions conferring risk for the disorder. We used a Df(h22q11)/+ mouse model of human 22q11.2 deletion to dissect gene expression patterns that would spatially overlap with differential resting-state functional connectivity (FC) patterns in this model (N = 12 Df(h22q11)/+ mice, N = 10 littermate controls). To confirm the translational relevance of our findings, we analyzed tissue samples from schizophrenia patients and healthy controls using machine learning to explore whether identified genes were co-expressed in humans. Additionally, we employed the STRING protein-protein interaction database to identify potential interactions between genes spatially associated with hypo- or hyper-FC. We found significant associations between differential resting-state connectivity and spatial gene expression patterns for both hypo- and hyper-FC. Two genes, Comt and Trmt2a, were consistently over-expressed across all networks. An analysis of human datasets pointed to a disrupted co-expression of these two genes in the brain in schizophrenia patients, but not in healthy controls. Our findings suggest that COMT and TRMT2A form a core genetic component implicated in differential resting-state connectivity patterns in the 22q11.2 deletion. A disruption of their co-expression in schizophrenia patients points out a prospective cause for the aberrance of brain networks communication in 22q11.2 deletion syndrome on a molecular level.


Catechol O-Methyltransferase/genetics , DiGeorge Syndrome/genetics , Gene Expression , tRNA Methyltransferases/genetics , Animals , Chromosome Deletion , DNA Copy Number Variations , Disease Models, Animal , Humans , Magnetic Resonance Imaging , Male , Mice , Schizophrenia/genetics
12.
Front Psychiatry ; 12: 656468, 2021.
Article En | MEDLINE | ID: mdl-34290627

In this report, we present cross-sectional and longitudinal findings from single-voxel MEGA-PRESS MRS of GABA as well as Glu, and Glu + glutamine (Glx) concentrations in the ACC of treatment-seeking alcohol-dependent patients (ADPs) during detoxification (first 2 weeks of abstinence). The focus of this study was to examine whether the amount of benzodiazepine administered to treat withdrawal symptoms was associated with longitudinal changes in Glu, Glx, and GABA. The tNAA levels served as an internal quality reference; in agreement with the vast majority of previous reports, these levels were initially decreased and normalized during the course of abstinence in ADPs. Our results on Glu and Glx support hyperglutamatergic functioning during alcohol withdrawal, by showing higher ACC Glu and Glx levels on the first day of detoxification in ADPs. Withdrawal severity is reflected in cumulative benzodiazepine requirements throughout the withdrawal period. The importance of withdrawal severity for the study of GABA and Glu changes in early abstinence is emphasized by the benzodiazepine-dependent Glu, Glx, and GABA changes observed during the course of abstinence.

13.
J Virol ; 95(18): e0026821, 2021 08 25.
Article En | MEDLINE | ID: mdl-34190597

Preventing human immunodeficiency virus (HIV) infection in newborns by vertical transmission remains an important unmet medical need in resource-poor areas where antiretroviral therapy (ART) is not available and mothers and infants cannot be treated prepartum or during the breastfeeding period. In the present study, the protective efficacy of the potent HIV-neutralizing antibodies PGT121 and VRC07-523, both produced in plants, were assessed in a multiple-SHIV (simian-human immunodeficiency virus)-challenge breastfeeding macaque model. Newborn macaques received either six weekly subcutaneous injections with PGT121 alone or as a cocktail of PGT121-LS plus VRC07-523-LS injected three times every 2 weeks. Viral challenge with SHIVSF162P3 was twice weekly over 5.5 weeks using 11 exposures. Despite the transient presence of plasma viral RNA either immediately after the first challenge or as single-point blips, the antibodies prevented a productive infection in all babies with no sustained plasma viremia, compared to viral loads ranging from 103 to 5 × 108 virions/ml in four untreated controls. No virus was detected in peripheral blood mononuclear cells (PBMCs), and only 3 of 159 tissue samples were weakly positive in the treated babies. Newborn macaques proved to be immunocompetent, producing transient anti-Env antibodies and anti-drug antibody (ADA), which were maintained in the circulation after passive broadly neutralizing antibody clearance. ADA responses were directed to the IgG1 Fc CH2-CH3 domains, which has not been observed to date in adult monkeys passively treated with PGT121 or VRC01. In addition, high levels of VRC07-523 anti-idiotypic antibodies in the circulation of one newborn was concomitant with the rapid elimination of VRC07. Plant-expressed antibodies show promise as passive immunoprophylaxis in a breastfeeding model in newborns. IMPORTANCE Plant-produced human neutralizing antibody prophylaxis is highly effective in preventing infection in newborn monkeys during repeated oral exposure, modeling virus in breastmilk, and offers advantages in cost of production and safety. These findings raise the possibility that anti-Env antibodies may contribute to the control of viral replication in this newborn model and that the observed immune responsiveness may be driven by the long-lived presence of immune complexes.


Breast Feeding , Broadly Neutralizing Antibodies/immunology , HIV-1/physiology , Immunization, Passive/methods , Nicotiana/immunology , Simian Acquired Immunodeficiency Syndrome/therapy , Simian Immunodeficiency Virus/immunology , Animals , Animals, Newborn , Female , HIV Infections/immunology , HIV Infections/therapy , HIV Infections/virology , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/virology , Macaca mulatta , Male , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Acquired Immunodeficiency Syndrome/virology , Nicotiana/virology , Viremia/immunology , Viremia/therapy , Viremia/virology
14.
Plant Dis ; 105(9): 2410-2417, 2021 Sep.
Article En | MEDLINE | ID: mdl-33599515

Begomoviruses infect food, fiber, and vegetable crop plants, including tomato, potato, bean, cotton, cucumber, and pumpkin, and damage many economically important crop plants worldwide. Tomato leaf curl Sudan virus (ToLCSDV) is the most widespread tomato-infecting begomovirus in Saudi Arabia. Using phage display technology, this study isolated two camel-derived nanobodies against purified ToLCSDV virions from a library of antigen-binding fragments (VHH or nanobody) of heavy-chain antibodies built from an immunized camel. The isolated nanobodies also cross-reacted with purified tomato yellow leaf curl virus virions and showed significant enzyme-linked immunosorbent assay reactivity with extracts from plants with typical begomovirus infection symptoms. The results can pave the way to developing diagnostics for begomovirus detection, design, and characterization of novel nanomaterials based on virus-like particles, in addition to nanobody-mediated begomovirus resistance in economically important crops, such as tomato, potato, and cucumber.


Begomovirus , Single-Domain Antibodies , Solanum lycopersicum , Begomovirus/genetics , Phylogeny , Plant Diseases , Single-Domain Antibodies/genetics
15.
Sci Rep ; 11(1): 4234, 2021 02 19.
Article En | MEDLINE | ID: mdl-33608622

Magnetic resonance imaging (MRI) of the brain combined with voxel-based morphometry (VBM) revealed changes in gray matter volume (GMV) in various disorders. However, the cellular basis of GMV changes has remained largely unclear. We correlated changes in GMV with cellular metrics by imaging mice with MRI and two-photon in vivo microscopy at three time points within 12 weeks, taking advantage of age-dependent changes in brain structure. Imaging fluorescent cell nuclei allowed inferences on (i) physical tissue volume as determined from reference spaces outlined by nuclei, (ii) cell density, (iii) the extent of cell clustering, and (iv) the volume of cell nuclei. Our data indicate that physical tissue volume alterations only account for 13.0% of the variance in GMV change. However, when including comprehensive measurements of nucleus volume and cell density, 35.6% of the GMV variance could be explained, highlighting the influence of distinct cellular mechanisms on VBM results.


Gray Matter/diagnostic imaging , Gray Matter/pathology , Magnetic Resonance Imaging , Microscopy , Age Factors , Animals , Cell Count , Cerebral Cortex/pathology , Data Analysis , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging/methods , Mice , Mice, Transgenic , Microscopy/methods , Organ Size , Translational Research, Biomedical
16.
Adv Biochem Eng Biotechnol ; 175: 137-166, 2021.
Article En | MEDLINE | ID: mdl-30069741

Most secreted proteins in eukaryotes are glycosylated, and after a number of common biosynthesis steps the glycan structures mature in a species-dependent manner. Therefore, human therapeutic proteins produced in plants often carry plant-like rather than human-like glycans, which can affect protein stability, biological function, and immunogenicity. The glyco-engineering of plant-based expression systems began as a strategy to eliminate plant-like glycans and produce human proteins with authentic or at least compatible glycan structures. The precise replication of human glycans is challenging, owing to the absence of a pathway in plants for the synthesis of sialylated proteins and the necessary precursors, but this can now be achieved by the coordinated expression of multiple human enzymes. Although the research community has focused on the removal of plant glycans and their replacement with human counterparts, the presence of plant glycans on proteins can also provide benefits, such as boosting the immunogenicity of some vaccines, facilitating the interaction between therapeutic proteins and their receptors, and increasing the efficacy of antibody effector functions. Graphical Abstract Typical structures of native mammalian and plant glycans with symbols indicating sugar residues identified by their short form and single-letter codes. Both glycans contain fucose, albeit with different linkages.


Fucose , Plants , Animals , Antibodies , Humans , Plants/genetics , Polysaccharides , Recombinant Proteins/genetics
17.
MAGMA ; 34(2): 183-187, 2021 Apr.
Article En | MEDLINE | ID: mdl-32696290

OBJECTIVE: Brain atlases are important research tools enabling researchers to focus their investigations on specific anatomically defined brain regions and are used in many MRI applications, e.g. in fMRI, morphometry, whole brain spectroscopy, et cetera. Despite their extensive use and numerous versions they usually consist of predefined rigid brain regions with a given level of detail often degrading them to a non-ideal tool in special research topics. RESULT: To overcome this intrinsic weakness we present a graphical user interface application which allows researchers to easily create mouse brain atlases with an adjustable user-defined level of detail and coverage to match specific research questions.


Brain , Magnetic Resonance Imaging , Animals , Cerebral Cortex , Mice , Neuroimaging
18.
Nat Nanotechnol ; 15(8): 646-655, 2020 08.
Article En | MEDLINE | ID: mdl-32669664

The COVID-19 pandemic has infected millions of people with no clear signs of abatement owing to the high prevalence, long incubation period and lack of established treatments or vaccines. Vaccines are the most promising solution to mitigate new viral strains. The genome sequence and protein structure of the 2019-novel coronavirus (nCoV or SARS-CoV-2) were made available in record time, allowing the development of inactivated or attenuated viral vaccines along with subunit vaccines for prophylaxis and treatment. Nanotechnology benefits modern vaccine design since nanomaterials are ideal for antigen delivery, as adjuvants, and as mimics of viral structures. In fact, the first vaccine candidate launched into clinical trials is an mRNA vaccine delivered via lipid nanoparticles. To eradicate pandemics, present and future, a successful vaccine platform must enable rapid discovery, scalable manufacturing and global distribution. Here, we review current approaches to COVID-19 vaccine development and highlight the role of nanotechnology and advanced manufacturing.


Coronavirus Infections/prevention & control , Nanostructures/therapeutic use , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Viral Vaccines/therapeutic use , Betacoronavirus/immunology , Betacoronavirus/pathogenicity , Biomedical Research/trends , COVID-19 , COVID-19 Vaccines , Coronavirus Infections/immunology , Coronavirus Infections/virology , Humans , Nanotechnology/trends , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , SARS-CoV-2 , Viral Vaccines/immunology
19.
Transl Psychiatry ; 10(1): 93, 2020 03 13.
Article En | MEDLINE | ID: mdl-32170065

22q11.2, 15q13.3, and 1q21.1 microdeletions attract considerable interest by conferring high risk for a range of neuropsychiatric disorders, including schizophrenia and autism. A fundamental open question is whether divergent or convergent neural mechanisms mediate this genetic pleiotropic association with the same behavioral phenotypes. We use a combination of rodent microdeletion models with high-field neuroimaging to perform a comparative whole-brain characterization of functional and structural mechanisms linked to high-risk states. Resting-state functional and structural magnetic resonance imaging data were acquired on mice carrying heterozygous microdeletions in 22q11.2 (N = 12), 15q13.3 (N = 11), and 1q21.1 (N = 11) loci. We performed network-based statistic, graph, and morphometric analyses. The three microdeletions did not share significant systems-level features. Instead, morphometric analyses revealed microcephaly in 1q21.1 and macrocephaly in 15q13.3 deletions, whereas cerebellar volume was specifically reduced in 22q11.2 deletion. In function, 22q11.2 deletion mice showed widespread cortical hypoconnectivity, accompanied by opposing hyperconnectivity in dopaminergic pathways, which was confirmed by graph analysis. 1q21.1 exhibited distinct changes in posterior midbrain morphology and function, especially in periaqueductal gray, whereas 15q13.3 demonstrated alterations in auditory/striatal system. The combination of cortical hypoconnectivity and dopaminergic hyperconnectivity and reduced cerebellum in 22q11.2 deletion mirrors key neurodevelopmental features of schizophrenia, whereas changes in midbrain and auditory/striatal morphology and topology in 1q21.1 and 15q13.3 rather indicate focal processes possibly linked to the emergence of abnormal salience perception and hallucinations. In addition to insights into pathophysiological processes in these microdeletions, our results establish the general point that microdeletions might increase risk for overlapping neuropsychiatric phenotypes through separable neural mechanisms.


DNA Copy Number Variations , Schizophrenia , Animals , Brain/diagnostic imaging , Chromosome Deletion , Mice , Phenotype , Schizophrenia/diagnostic imaging , Schizophrenia/genetics
20.
Transl Psychiatry ; 10(1): 56, 2020 02 04.
Article En | MEDLINE | ID: mdl-32066682

As ketamine is increasingly used as an effective antidepressant with rapid action, sustaining its short-lived efficacy over a longer period of time using a schedule of repeated injections appears as an option. An open question is whether repeated and single administrations would affect convergent neurocircuits. We used a combination of one of the most robust animal models of depression with high-field neuroimaging to perform a whole-brain delineation of functional mechanisms underlying ketamine's effects. Rats from two genetic strains, depressive-like and resilient, received seven treatments of 10 mg/kg S-ketamine (N = 14 depressive-like, N = 11 resilient) or placebo (N = 12 depressive-like, N = 10 resilient) and underwent resting-state functional magnetic resonance imaging. Using graph theoretical models of brain networks, we compared effects of repeated ketamine with those of single administration from a separate dataset of our previous study. Compared to single treatment, repeated ketamine evoked strain-specific brain network randomization, resembling characteristics of the depressive-like strain and patients. Several affected regions belonged to the auditory, visual, and motor circuitry, hinting at possible cumulative side effects. Finally, when compared to saline, repeated ketamine affected only a few local topological properties and had no effects on global properties. In combination with the lack of clear differences compared to placebo, our findings point toward an inefficacy of ketamine's long-term administration on brain topology, making questionable the postulated effect of repeated administration and being consistent with the recently reported absence of repeated ketamine's antidepressant efficacy in several placebo-controlled studies.


Ketamine , Animals , Antidepressive Agents , Brain/diagnostic imaging , Humans , Rats
...