Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Pestic Biochem Physiol ; 203: 105984, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39084788

RESUMEN

This study focuses on dilution effect of target-site resistance (TSR) to acetolactate synthase (ALS) inhibitors in Schoenoplectiella juncoides, which harbors two ALS genes, ALS1 and ALS2. We assessed gene expression, enzyme activity, and whole-plant resistance profiles across four S. juncoides lines: the susceptible line, the parental resistant lines with a homozygous mutation in either ALS1 or ALS2, and the bred progeny line with homozygous mutations in both ALS1 and ALS2. Gene expression and enzyme function showed a proportional relationship that the expression ratios of ALS1 to ALS2, approximately 70:30, were consistent with the functional ratio predicted by the double-sigmoidal plateau positions observed in enzyme assays. However, at the whole-plant level, resistance did not correlate to the putative abundance of susceptible enzyme, but the parental lines showed similar resistance to each other despite different enzyme-level resistances. This suggests a non-proportional mechanism in the reflection of physiological enzymatic profiles to whole-plant resistance profiles. These findings highlight the complexity of herbicide resistance and the need for further research to understand the mechanisms that influence resistance outcomes. Understanding these relationships is essential for developing strategies to manage herbicide resistance effectively.


Asunto(s)
Acetolactato Sintasa , Cyperaceae , Resistencia a los Herbicidas , Herbicidas , Acetolactato Sintasa/genética , Acetolactato Sintasa/metabolismo , Acetolactato Sintasa/antagonistas & inhibidores , Resistencia a los Herbicidas/genética , Herbicidas/farmacología , Cyperaceae/genética , Cyperaceae/efectos de los fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Mutación , Genes de Plantas
2.
Pest Manag Sci ; 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38873996

RESUMEN

Epyrifenacil is a novel PPO-inhibiting herbicide discovered and developed by Sumitomo Chemical. Epyrifenacil belongs to the pyrimidinedione chemical class and has a unique three-ring structure. It is systemically active on a broad range of weeds including grass weeds and some target-site-based PPO-inhibitor resistant broadleaf weeds. Its systemic action is mediated by a phloem movement of the active form of epyrifenacil. In addition, epyrifenacil's vapor action is sufficiently low to not cause an off-target movement to nontarget sensitive crops. It is expected that epyrifenacil will contribute to global food production in the near future. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

3.
Pestic Biochem Physiol ; 198: 105745, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38225088

RESUMEN

Schoenoplectiella juncoides, a noxious sedge weed in Japanese rice paddy, has two ALS genes, and ALS-inhibitor-resistant plants have a mutation in one of the ALS genes. The authors aimed (a) to quantitate the effect of the number of mutant alleles of ALS genes on whole-plant resistance of S. juncoides and (b) to clarify a mode of inheritance of the resistance by investigating resistance levels of the progenies of a hybrid between two S. juncoides plants with Trp574Leu substitution in different ALS. A dose-response analysis on the parental lines and the F1 population suggested that the two ALS genes contribute equally to whole-plant resistant levels. A dose-response study on the F2 population indicated that it could be classified into five groups based on the sensitivities to metsulfuron-methyl. The five groups (in ascending order of resistance levels) were considered to have zero, one, two, three, and four mutant alleles. The stacking effect of mutant alleles on resistance enhancement was more significant when the number of mutant alleles was low than when it was high; in other words, each additional mutant allele stacking increases plant resistance, but the effect saturates as the number of mutant alleles increases. A chi-square test supported that the segregation ratio of the five groups corresponds to 1:4:6:4:1 of Mendelian independence for the two ALS loci.


Asunto(s)
Acetolactato Sintasa , Cyperaceae , Herbicidas , Lejía , Lejía/farmacología , Cyperaceae/genética , Herbicidas/farmacología , Mutación , Alelos , Resistencia a los Herbicidas/genética , Acetolactato Sintasa/genética
4.
Pestic Biochem Physiol ; 107(1): 106-11, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25149243

RESUMEN

Schoenoplectus juncoides, a noxious weed for paddy rice, is known to become resistant to sulfonylurea (SU) herbicides by a target-site mutation in either of the two acetolactate synthase (ALS) genes (ALS1 and ALS2). SU-resistant S. juncoides plants having an Asp376Glu mutation in ALS2 were found from a paddy rice field in Japan, but their resistance profile has not been quantitatively investigated. In this study, dose-response of the SU-resistant accession was compared with that of a SU-susceptible accession at in vivo whole-plant level as well as at in vitro enzymatic level. In whole-plant tests, resistance factors (RFs) based on 50% growth reduction (GR50) for imazosulfuron (ISF), bensulfuron-methyl (BSM), metsulfuron-methyl (MSM), bispyribac-sodium (BPS), and imazaquin (IMQ) were 176, 40, 14, 5.2 and 1.5, respectively. Thus, the accession having an Asp376Glu mutation in ALS2 was highly resistant to the three SU herbicides and moderately resistant to BPS, but was not substantially resistant to IMQ. This is slightly different from the earlier results reported from other weeds with an Asp376Glu mutation, in which the mutation confers resistance to broadly all the chemical classes of ALS-inhibiting herbicides. In enzymatic tests, ALS2 of S. juncoides was expressed in E. coli; the resultant ALS2 was subjected to an in vitro assay. RFs of the mutated ALS2 based on 50% enzymatic inhibition (I50) for ISF, BSM, MSM, BPS, and IMQ were 3699, 2438, 322, 80, and 4.8, respectively. The RFs of ALS2 were highly correlated with those of the whole-plant; this suggests that the Asp376Glu mutation in ALS2 is a molecular basis for the whole-plant resistance. The presence of two ALS genes in S. juncoides can at least partially explain why the whole-plant RFs were less than those of the expressed ALS2 enzymes.


Asunto(s)
Acetolactato Sintasa/genética , Cyperaceae/efectos de los fármacos , Herbicidas/farmacología , Proteínas de Plantas/genética , Malezas/efectos de los fármacos , Compuestos de Azufre/farmacología , Acetolactato Sintasa/antagonistas & inhibidores , Acetolactato Sintasa/metabolismo , Ácido Aspártico/genética , Benzoatos/farmacología , Cyperaceae/genética , Cyperaceae/crecimiento & desarrollo , Ácido Glutámico/genética , Resistencia a los Herbicidas/genética , Imidazoles/farmacología , Mutación , Proteínas de Plantas/antagonistas & inhibidores , Proteínas de Plantas/metabolismo , Malezas/genética , Malezas/crecimiento & desarrollo , Pirimidinas/farmacología , Quinolinas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA