Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
2.
Biochem Genet ; 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38436816

RESUMEN

Multiple myeloma is a type of malignant neoplasia whose treatment has changed over the past decade. This study aimed to investigate the effects of combination of Adenovector-carrying interleukin-24 and herpes simplex virus 1 thymidine kinase/ganciclovir on tumor growth, autophagy, and unfolded protein response mechanisms in mouse model of multiple myeloma. Six groups of mice, including Ad-HSV-tk/GCV, Ad-IL-24, Ad-HSV-tk/IL-24, Ad-GFP, and positive and negative controls, were investigated, and each group was injected every 72 h. The tumor size was measured several times. The expression of LC3B evaluated through western blotting and ASK-1, CHOP, Caspase-3, and ATF-6 genes in the UPR and apoptosis pathways were also analyzed by the quantitative polymerase chain reaction (qPCR) method. The present results showed that the injection of Ad-HSV-tk/GCV, Ad-HSV-tk/IL-24, and metformin reduced the tumor size. The expression of LC3B was significantly higher in the treatment groups and positive control groups compared to the negative control group. The expression of CHOP, caspase-3, and ATF-6 genes was significantly higher in the Ad-IL-24 group compared to the other treatment groups. Besides, the ASK-1 expression was significantly lower in the Ad-IL-24 group as compared to the other groups. Overall, the results indicated that the presence of the HSV-tk gene in the adenovectors reduced the size of tumors and induced autophagy by triggering the expression of LC3B protein. The presence of the IL-24 might affect tumor growth but not as much the therapeutic effect of HSV-tk. Furthermore, the results indicated that co-administration of IL-24 and HSV-tk had no synergistic effect on tumor size control.

3.
Biotechnol Lett ; 46(3): 315-354, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38403788

RESUMEN

The HIV-1 virus has been regarded as a catastrophe for human well-being. The global incidence of HIV-1-infected individuals is increasing. Hence, development of effective immunostimulatory molecules has recently attracted an increasing attention in the field of vaccine design against HIV-1 infection. In this study, we explored the impacts of CD40L and IFN-γ as immunostimulatory adjuvants for our candidate HIV-1 Nef vaccine in human and mouse using immunoinformatics analyses. Overall, 18 IFN-γ-based vaccine constructs (9 constructs in human and 9 constructs in mouse), and 18 CD40L-based vaccine constructs (9 constructs in human and 9 constructs in mouse) were designed. To find immunogenic epitopes, important characteristics of each component (e.g., MHC-I and MHC-II binding, and peptide-MHC-I/MHC-II molecular docking) were determined. Then, the selected epitopes were applied to create multiepitope constructs. Finally, the physicochemical properties, linear and discontinuous B cell epitopes, and molecular interaction between the 3D structure of each construct and CD40, IFN-γ receptor or toll-like receptors (TLRs) were predicted. Our data showed that the full-length CD40L and IFN-γ linked to the N-terminal region of Nef were capable of inducing more effective immune response than multiepitope vaccine constructs. Moreover, molecular docking of the non-allergenic full-length- and epitope-based CD40L and IFN-γ constructs to their cognate receptors, CD40 and IFN-γ receptors, and TLRs 4 and 5 in mouse were more potent than in human. Generally, these findings suggest that the full forms of these adjuvants could be more efficient for improvement of HIV-1 Nef vaccine candidate compared to the designed multiepitope-based constructs.


Asunto(s)
Vacunas contra el SIDA , VIH-1 , Interferón gamma , Vacunas de Subunidad , Productos del Gen nef del Virus de la Inmunodeficiencia Humana , VIH-1/inmunología , Animales , Vacunas de Subunidad/inmunología , Vacunas de Subunidad/química , Ratones , Vacunas contra el SIDA/inmunología , Vacunas contra el SIDA/química , Humanos , Interferón gamma/metabolismo , Interferón gamma/inmunología , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/inmunología , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/química , Adyuvantes Inmunológicos/farmacología , Simulación del Acoplamiento Molecular , Infecciones por VIH/prevención & control , Infecciones por VIH/inmunología , Infecciones por VIH/virología , Ligando de CD40/inmunología , Ligando de CD40/química , Simulación por Computador , Epítopos de Linfocito B/inmunología , Epítopos de Linfocito B/química , Epítopos/inmunología , Epítopos/química , Vacunas de Subunidades Proteicas
4.
Life Sci ; 340: 122456, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38266814

RESUMEN

AIMS: Human papillomavirus (HPV) infections are highly prevalent globally. While preventive HPV vaccines exist, therapeutic vaccines are needed to treat existing HPV lesions and malignancies. This study evaluated the immunostimulatory and anti-tumor effects of three therapeutic vaccine candidates based on the recombinant protein, tumor cell lysate (TCL), and engineered exosome (Exo) harboring the heat shock protein 27 (Hsp27)-E7 fusion construct in mouse model. MAIN METHODS: At first, the recombinant Hsp27-E7 protein was generated in E. coli expression system. Then, tumor cell lysates-based and engineered exosomes-based vaccine constructs harboring green fluorescent protein (GFP) and Hsp27-E7 were produced using lentiviral system. Finally, their immunological and antitumor effects were investigated in both prophylactic and therapeutic experiments. KEY FINDINGS: Our data showed that the recombinant Hsp27-E7 protein, TCL-Hsp27-E7 and Exo-Hsp27-E7 regimens can induce the highest level of IFN-γ, TNF-α and Granzyme B, respectively. The percentage of tumor-free mice was identical for three vaccine strategies (survival rate: 75 %) in both prophylactic and therapeutic experiments. Generally, the TCL-Hsp27-E7, Exo-Hsp27-E7 and recombinant Hsp27-E7 protein regimens induced effective immune responses toward Th1 and CTL activity, and subsequently antitumor effects in mouse model. SIGNIFICANCE: Regarding to higher Granzyme B secretion, lower tumor growth and more safety, the Exo-Hsp27-E7 regimen can be considered as the most promising HPV vaccination strategy.


Asunto(s)
Exosomas , Neoplasias , Infecciones por Papillomavirus , Vacunas contra Papillomavirus , Humanos , Animales , Ratones , Vacunas contra Papillomavirus/genética , Granzimas/metabolismo , Proteínas de Choque Térmico HSP27 , Exosomas/metabolismo , Infecciones por Papillomavirus/prevención & control , Escherichia coli/metabolismo , Proteínas E7 de Papillomavirus/genética , Ratones Endogámicos C57BL
5.
Sci Rep ; 13(1): 16801, 2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37798448

RESUMEN

To relieve the limitations of the human papillomavirus (HPV) vaccines based on L1 capsid protein, vaccine formulations based on RG1 epitope of HPV L2 using various built-in adjuvants are under study. Herein, we describe design and construction of a rejoined peptide (RP) harboring HPV16 RG1 epitope fused to TLR4/5 agonists and a tetanus toxoid epitope, which were linked by the (GGGS)3 linker in tandem. In silico analyses indicated the proper physicochemical, immunogenic and safety profile of the RP. Docking analyses on predicted 3D model suggested the effective interaction of TLR4/5 agonists within RP with their corresponding TLRs. Expressing the 1206 bp RP-coding DNA in E. coli produced a 46 kDa protein, and immunization of mice by natively-purified RP in different adjuvant formulations indicated the crucial role of the built-in adjuvants for induction of anti-RG1 responses that could be further enhanced by combination of TLR7 agonist/alum adjuvants. While the TLR4/5 agonists contributed in the elicitation of the Th2-polarized immune responses, combination with TLR7 agonist changed the polarization to the balanced Th1/Th2 immune responses. Indeed, RP + TLR7 agonist/alum adjuvants induced the strongest immune responses that could efficiently neutralize the HPV pseudoviruses, and thus might be a promising formulation for an inexpensive and cross-reactive HPV vaccine.


Asunto(s)
Infecciones por Papillomavirus , Vacunas contra Papillomavirus , Animales , Ratones , Humanos , Epítopos , Receptor Toll-Like 4 , Receptor Toll-Like 7 , Escherichia coli/genética , Infecciones por Papillomavirus/prevención & control , Adyuvantes Inmunológicos/farmacología , Formación de Anticuerpos , Ratones Endogámicos BALB C
6.
Pathog Dis ; 812023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-37667486

RESUMEN

The coronavirus disease (COVID-19) pandemic has imposed deployment of an effective vaccine as a worldwide health priority. The new variants of SARS-CoV-2 have also brought serious concerns due to virus eradiation hesitancy. In this study, we evaluated the protective immune system activity of a recombinant viral vector-based vaccine candidate encoding a fusion spike, membrane and nucleocapsid proteins, Spike (528-1273aa)-M-N, in BALB/c via two different routes of delivery, intranasal and subcutaneous. The immune responses were then assessed through specific SARS-CoV-2 antibodies, interleukin and granzyme B secretion. The outcomes showed that the IgG titer and IgA secretion was higher in intranasal route in comparison with the subcutaneous, and what is more, a higher titer of IL-4 was detected through the intranasal route, whereas IFN-γ was highly induced via the subcutaneous route. The cytotoxic cell activities were mostly achieved via subcutaneous route immunization. Vaccination with the target antigen is immunogenic and led to induction of specific antibodies. Both humoral and cellular immunity arms were well activated in immunized mice, especially through intranasal route with detectable IgA and IgG. Therefore, implication of the platform as a potential vaccine candidate has potential as a future prophylactic vaccine that guarantees further investigations for the assessment of its immunogenicity in humans.

7.
Avicenna J Med Biotechnol ; 13(3): 131-135, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34484642

RESUMEN

BACKGROUND: Acquired immunodeficiency syndrome (HIV/AIDS) is still a major global concern and no effective therapeutic vaccine has been produced to prevent the problem. Among HIV-1 proteins, vif as a basic cytoplasmic protein of HIV-1 is involved in late stages of viral generation and plays important role in HIV-1 virion replication. It also increases the stability of virion cores, which probably inhibits early degradation of viral entry. Therefore, it seems rational to apply this protein as a vaccine based on its impact on HIV-1 life cycle. This study aimed at cloning, expression and production of vif protein as an HIV-1 vaccine candidate. METHODS: In this study, vif sequence was amplified from pLN4-3 plasmid including HIV-1 vif gene and then cloned in pET23a to generate the recombinant plasmids of pET23a/vif with hexahistidine tags. BL21 competent cells were transformed to obtain the protein of interest. Ni-NTA column was used to purify the protein of interest and western blotting confirmed vif protein using anti-His tag antibody. In order to express the gene of interest in eukaryotic cells, vif was sub-cloned into pEGFP plasmids and HEK 293-T cells were transfected. Flow cytometry was then applied to evaluate GFP expression. RESULTS: vif protein was expressed in BL21(DE3) strain and identified as a23 kDa band in SDS-PAGE and confirmed by anti-His antibody in western blotting. The purified protein concentration was 173.3 µg/ml using Bradford assay. HEK-293T cells were successfully transfected by recombinant pEGFP plasmids and flow cytometry confirmed the cell transfection. CONCLUSION: vif protein can be expressed in mammalian cells and may be a proper protein subunit vaccine candidate against HIV-1.

8.
Expert Rev Vaccines ; 20(7): 839-855, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34114513

RESUMEN

INTRODUCTION: Considerable efforts have been made to treat and prevent acute and chronic infections caused by the hepatitis C virus (HCV). Current treatments are unable to protect people from reinfection. Hence, there is a need for development of both preventive and therapeutic HCV vaccines. Many vaccine candidates are in development to fight against HCV, but their efficacy has so far proven limited partly due to low immunogenicity. AREAS COVERED: We explore development of novel and powerful adjuvants to achieve an effective HCV vaccine. The basis for developing strong adjuvants is to understand the innate immunity pathway, which subsequently stimulates humoral and cellular immune responses. We have also investigated immunogenicity of developed adjuvants that have been used in recent studies available in online databases such as PubMed, PMC, ScienceDirect, Google Scholar, etc. EXPERT OPINION: Adjuvants are used as a part of vaccine formulation to boost vaccine immunogenicity and antigen delivery. Several FDA-approved adjuvants are used in licensed human vaccines. Unfortunately, no adjuvant has yet been proven to boost HCV immune responses to the extent needed for an effective vaccine. One of the promising approaches for developing an effective adjuvant is the combination of various adjuvants to trigger several innate immune responses, leading to activation of adaptive immunity.[Figure: see text].


Asunto(s)
Hepatitis C , Vacunas , Adyuvantes Inmunológicos , Hepacivirus , Hepatitis C/prevención & control , Humanos , Inmunidad Celular
9.
Virus Res ; 298: 198403, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33775753

RESUMEN

Various approaches have been investigated to prevent or eliminate HIV-1 since 1981. However, the virus has been affecting human population worldwide with no effective vaccine yet. The conserved regions among the viral genes are suitable targets in mutable viruses to induce the immune responses via an effective delivery platform. In this study, we aimed at evaluation of p24 and nef in two forms of full and truncated genes as two fusion antigenic forms according to our previous bioinformatics analysis. The designed antigens were then transferred through ex vivo generated dendritic cells and also proteins in BALB/c to assess and compare immunogenicity. p24 and Nef amino acid sequences were aligned, then, the most conserved regions were selected and two fusion forms as the truncated (p24:80-231aa-Nef:120-150aa) and the full from (p24-Nef) were cloned and expressed in prokaryotic and eukaryotic systems. Lentiviral vectors were applied to generate recombinant virions harboring the genes of interest to transduce generated murine dendritic cells. BALB/c mice received the recombinant DCs or recombinant proteins according to the defined schedule. IgG development was assessed to determine humoral immune activity and cellular immune responses were evaluated by IL-5 and IFN-y induction. Granzyme B secretion was also investigated to determine CTL activity in different immunized groups. The data showed high induction of cellular immune responses in dendritic cell immunization specifically in immunized mice with the truncated form of the p24 and Nef by high secretion of IFN-y and strong CTL activity. Moreover, protein/ DC prime-boost formulation led to stronger Th1 pathway and strong CTL activation in comparison with other formulations. The generated recombinant dendritic cells expressing p24-Nef induced humoral and cellular immunity in a Th1 pathway specifically with the in silico predicted truncated antigen which could be of high value as a dendritic cell therapeutic vaccine candidate against HIV-1.


Asunto(s)
Vacunas contra el SIDA , Infecciones por VIH , VIH-1 , Vacunas , Vacunas contra el SIDA/genética , Animales , Células Dendríticas , Antígenos VIH/genética , Proteína p24 del Núcleo del VIH/genética , Infecciones por VIH/prevención & control , Ratones , Ratones Endogámicos BALB C , Linfocitos T Citotóxicos , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/metabolismo
10.
Mol Biotechnol ; 63(5): 389-409, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33625681

RESUMEN

The emerging Coronavirus Disease 2019 (COVID-19) pandemic has posed a serious threat to the public health worldwide, demanding urgent vaccine provide. According to the virus feature as an RNA virus, a high rate of mutations imposes some vaccine design difficulties. Bioinformatics tools have been widely used to make advantage of conserved regions as well as immunogenicity. In this study, we aimed at immunoinformatic evaluation of SARS-CoV-2 proteins conservancy and immunogenicity to design a preventive vaccine candidate. Spike, Membrane and Nucleocapsid amino acid sequences were obtained, and four possible fusion proteins were assessed and compared in terms of structural features and immunogenicity, and population coverage. MHC-I and MHC-II T-cell epitopes, the linear and conformational B-cell epitopes were evaluated. Among the predicted models, the truncated form of Spike in fusion with M and N protein applying AAY linker has high rate of MHC-I and MCH-II epitopes with high antigenicity and acceptable population coverage of 82.95% in Iran and 92.51% in Europe. The in silico study provided truncated Spike-M-N SARS-CoV-2 as a potential preventive vaccine candidate for further in vivo evaluation.


Asunto(s)
Vacunas contra la COVID-19/inmunología , COVID-19/prevención & control , Biología Computacional , SARS-CoV-2/inmunología , COVID-19/epidemiología , Epítopos de Linfocito T/inmunología , Humanos , Pandemias/prevención & control
11.
Curr Drug Deliv ; 18(7): 1014-1021, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33388019

RESUMEN

BACKGROUND: There have been massive efforts on vaccine development against HIV-1 since its discovery. Various approaches have been taken to attention, including rational vaccine design, optimized delivery systems and heterologous regimen to eradicate the virus. DNA vaccines fundamentally induce host immune responses by genetically engineered plasmids encoding antigens and expressed in vivo without the need of the specific delivery system. Therefore, long-term endogenous antigen expression could be possible. OBJECTIVE: In this study, we aimed at evaluation and comparison of DNA and protein vaccine based on two forms of full and truncated HIV-1 p24-nef antigens by in silico design in BLALB/c. METHODS: The recombinant pcDNA3.1 harboring two sets of HIV-1 p24 and nef genes in truncated and full forms were generated and applied to immunize BALB/c along with the corresponding proteins via three different DNA/DNA, DNA/protein and protein/protein regimens. RESULTS: The results showed that the applied regimens could elicit strong immune responses in comparison with controls and the prim-boost DNA/protein regimen reached the highest immune induction (p < 0.05). Moreover, prime-boost approach was assessed more successfully in a qualitatively broad Th1 response induction. The truncated form of the antigens, p24(80-231 aa)-AAY- Nef (120-150), was evaluated more immunogenic in agreement with the in silico investigation. CONCLUSION: The truncated form of p24-Nef was evaluated highly immunogenic specially when applied in prim-boost DNA/Protein regimen and could be investigated in other delivery systems and a proper animal model to achieve a therapeutic vaccine candidate against HIV-1.


Asunto(s)
Infecciones por VIH , VIH-1 , Vacunas de ADN , Animales , Proteína p24 del Núcleo del VIH/genética , VIH-1/genética , Ratones , Ratones Endogámicos BALB C , Linfocitos T , Desarrollo de Vacunas
12.
Curr HIV Res ; 18(5): 315-323, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32532193

RESUMEN

BACKGROUND: Finding a safe and effective vaccine for HIV-1 infection is still a major concern. OBJECTIVE: This study aimed to design and produce a recombinant Nef-MPER V3 protein fused with IMT-P8 using E. coli expression system to provide a potential HIV vaccine with high cellular penetrance. METHODS: After synthesizing the DNA sequence of the fusion protein, the construct was inserted into the pET-28 expression vector. The recombinant protein expression was induced using 1 mM IPTG and the product was purified through affinity chromatography. Characterization of cellular delivery, toxicity and immunogenicity of the protein was carried out. RESULTS: The recombinant protein was expressed and confirmed by the anti-Nef antibody through western blotting. Data analyses showed that the protein possessed no considerable toxicity effect and has improved the IMT-P8 penetration rate in comparison to a control sample. Moreover, the antigen immunogenicity of the protein induced specific humoral response in mice. CONCLUSION: It was concluded that IMT-P8-Nef-MPER-V3 fusion protein has a high penetrance rate in mammalian cell line and low toxicity, thus it can be potentially considered as a vaccine against HIV-1.


Asunto(s)
Vacunas contra el SIDA/inmunología , Péptidos de Penetración Celular/metabolismo , Infecciones por VIH/prevención & control , VIH-1/inmunología , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/metabolismo , Animales , Línea Celular , Péptidos de Penetración Celular/genética , Infecciones por VIH/virología , VIH-1/genética , Humanos , Ratones , Proteínas Recombinantes de Fusión , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/genética
13.
Protein Pept Lett ; 27(11): 1151-1158, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32364062

RESUMEN

BACKGROUND: There is no effective and safe preventive/therapeutics vaccine against HIV-1 worldwide. Different viral proteins such as Nef, and two regions of Env including; variable loop of gp120 (V3) and membrane proximal external region of gp41 (MPER) are particularly important for vaccine development in different strategies and they are also the primary targets of cellular and humoral immune responses. On the other side, LDP12 is a new cell-penetrating peptide (CPP) which is capable of therapeutic application and cargoes delivery across the cellular membrane. OBJECTIVE: In current study, we designed and produced Nef-MPER-V3 fusion protein harboring LDP12 that has the capability of being used in future vaccine studies. METHODS: The CPP-protein was expressed in E. coli Rosseta (DE3) strain and purified through Ni-NTA column. Characterization of cellular delivery and toxicity of the recombinant protein were evaluated by western blotting and MTT assay. RESULTS: Our results showed that the CPP-protein was successfully expressed and purified with high yield of 5 mg/L. Furthermore, non-cytotoxic effect was observed and specific band (~ 37 KDa) in western blotting indicated the capability of LDP12 to improve the rate of penetration into HEK-293T cells in comparison with a control sample. CONCLUSION: Altogether, the data indicated that LDP12 CPP could be utilized to internalize HIV-1 Nef-MPER-V3 protein into eukaryotic cell lines without any toxicity and represented a valuable potential vaccine candidate and this guarantees the further evaluation towards the assessment of its immunogenicity in mice, which is currently under process.


Asunto(s)
Vacunas contra el SIDA , Péptidos de Penetración Celular , Portadores de Fármacos , Proteína gp41 de Envoltorio del VIH , VIH-1 , Oligopéptidos , Proteínas Recombinantes de Fusión , Productos del Gen nef del Virus de la Inmunodeficiencia Humana , Vacunas contra el SIDA/química , Vacunas contra el SIDA/inmunología , Vacunas contra el SIDA/farmacocinética , Vacunas contra el SIDA/farmacología , Péptidos de Penetración Celular/química , Péptidos de Penetración Celular/inmunología , Péptidos de Penetración Celular/farmacocinética , Péptidos de Penetración Celular/farmacología , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacología , Células HEK293 , Proteína gp41 de Envoltorio del VIH/química , Proteína gp41 de Envoltorio del VIH/inmunología , Proteína gp41 de Envoltorio del VIH/farmacocinética , Proteína gp41 de Envoltorio del VIH/farmacología , VIH-1/química , VIH-1/inmunología , Humanos , Oligopéptidos/química , Oligopéptidos/inmunología , Oligopéptidos/farmacocinética , Oligopéptidos/farmacología , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/inmunología , Proteínas Recombinantes de Fusión/farmacocinética , Proteínas Recombinantes de Fusión/farmacología , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/química , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/inmunología , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/farmacocinética , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/farmacología
14.
Curr Drug Deliv ; 17(5): 387-395, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32183667

RESUMEN

BACKGROUND: Different approaches have been investigated to develop a preventive or therapeutic vaccine, although none of them has been fully practical. Therapeutic vaccines against HIV-1 have been studied with the aim of eliminating the virus from reservoir cells with or without HAART (Highly Active Antiretroviral Therapy). Fusion proteins with the most immunogenic features among conserved regions can facilitate this achievement in such a variable virus. To achieve the most immunogenic and also conserved regions, bioinformatics tools are widely used to predict antigens' features before applying them. OBJECTIVE: This study aimed at the in vitro evaluation of p24 -Nef fusion protein based on the previous in silico design to achieve a potential therapeutic subunit vaccine against HIV-1. METHODS: The truncated form of p24-Nef using AAY flexible linker and the full protein were expressed and evaluated in the prokaryotic system and confirmed by western blotting. We also used pcDNA3.1 to transfect Lenti-X 293T cells. Moreover, lentiviral vectors were applied to produce recombinant virions harboring the genes of interest and cell transduction. RESULTS: Both fusion proteins in a truncated and a full form were expressed and confirmed by Anti Nef polyclonal antibody in western blotting. Recombinant virions were generated and transduced Lenti-X 293T cells confirming by immunofluorescence microscope and p24 ELISA assay kit. Transduced cells were analyzed by SDS-PAGE and western blotting, which resulted in approved protein expression. CONCLUSION: Fusion protein of p24 and Nef is well expressed in eukaryotic cell lines according to its pre-evaluated features by bioinformatics tools.


Asunto(s)
Proteína p24 del Núcleo del VIH/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/metabolismo , Células HEK293 , Proteína p24 del Núcleo del VIH/genética , VIH-1/inmunología , Humanos , Lentivirus/genética , Transducción Genética , Vacunas Virales , Virión , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/genética
15.
Avicenna J Med Biotechnol ; 12(1): 44-51, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32153738

RESUMEN

BACKGROUND: The delivery of exogenous genes into cells for functional expression is required for development of DNA vaccine and gene therapy in medicine and pharmacology. Cell Penetrating Peptides (CPPs) were considered to mediate gene and drug delivery into living cells. In this study, an attempt was made to evaluate the efficiency of an arginine-rich CPP, HR9, in HCV NS3 gene delivery compared to TurboFect cationic polymer and supercharged +36 GFP into HEK-293T cells. METHODS: The recombinant pEGFP-NS3 was constructed and their accuracy was confirmed by digestion and sequencing. Then, the recombinant plasmid was transfected into HEK-293T cells by TurboFect, +36 GFP and HR9 gene delivery systems. The expression of NS3 protein was assessed by fluorescent microscopy, flow cytometry and western blotting. RESULTS: Our data indicated that HR9 peptide was able to form stable complexes with plasmid DNA and increased its delivery into HEK-293T cells in a non-covalent manner. Furthermore, treatment of cells with HR9 and HR9/DNA complexes resulted in a viability of 90-95% indicating this CPP was not cytotoxic. The analysis of zeta potential and size showed the importance of interactions between positively-charged HR9/pEGFP-NS3 complexes and negatively-charged plasma membranes. CONCLUSION: The non-toxic HR9 CPP can be considered an effective carrier for delivering plasmid DNA harboring Hepatitis C virus (HCV) gene in therapeutic vaccine design.

16.
Curr HIV Res ; 17(6): 408-428, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31755394

RESUMEN

BACKGROUND: An effective vaccine against human immunodeficiency virus 1 (HIV-1) is an important global health priority. Despite many efforts in the development of the HIV-1 vaccine, no effective vaccine has been approved yet. Recently, polyepitope vaccines including several immunogenic and conserved epitopes of HIV-1 proteins have received special attention. METHODS: In this study, HIV-1 Nef, Tat, Gp160 and P24 proteins were considered for selection of immunodominant and conserved epitopes due to their critical roles in the viral life cycle and pathogenesis. At first, the Nef60-84-Nef126-144-Tat29-49-Gp16030-53-Gp160308-323-P248-151 DNA construct was designed using in silico studies. Then, the DNA construct was subcloned in pEGFP-N1 and pET- 24a (+) expression vectors and the rNef-Tat-Gp160-P24 polyepitope peptide was generated in E.coli expression system for in vitro delivery using novel cell-penetrating peptides (CPPs), LDP-NLS and CyLoP-1, in a non-covalent manner. Also, the HR9 and MPG CPPs were used to transfer the DNA construct. RESULTS: Our results showed that the recombinant polyepitope peptide generated in Rosetta strain migrated as a clear band of ~31 kDa in SDS-PAGE. The SEM data confirmed the formation of stable nanoparticles with a size below 250 nm. MTT assay revealed that the complexes did not represent any considerable cytotoxic effect compared to untreated cells. The results of fluorescence microscopy, flow cytometry and western blotting indicated that these CPPs successfully delivered polyepitope constructs into HEK-293T cell line. CONCLUSION: These data suggested that these CPPs can be used as a promising approach for the development of the HIV-1 vaccine.


Asunto(s)
Péptidos de Penetración Celular/administración & dosificación , Epítopos/administración & dosificación , VIH-1 , Proteínas Virales , Secuencia de Aminoácidos , Animales , Línea Celular , Péptidos de Penetración Celular/química , Péptidos de Penetración Celular/genética , Péptidos de Penetración Celular/inmunología , Mapeo Epitopo , Epítopos/química , Epítopos/genética , Epítopos/inmunología , Epítopos de Linfocito T/administración & dosificación , Epítopos de Linfocito T/química , Epítopos de Linfocito T/genética , Epítopos de Linfocito T/inmunología , Expresión Génica , Vectores Genéticos/genética , VIH-1/genética , VIH-1/inmunología , VIH-1/metabolismo , Humanos , Modelos Moleculares , Nanopartículas , Proteínas Recombinantes , Relación Estructura-Actividad , Transfección , Proteínas Virales/química , Proteínas Virales/genética , Proteínas Virales/inmunología
17.
Biotechnol Lett ; 41(11): 1283-1298, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31531750

RESUMEN

OBJECTIVES: Developing an effective HIV vaccine that stimulates the humoral and cellular immune responses is still challenging because of the diversity of HIV-1 virus, polymorphism of human HLA and lack of a suitable delivery system. RESULTS: Using bioinformatics tools, we designed a DNA construct encoding multiple epitopes. These epitopes were highly conserved within prevalent HIV-1 subtypes and interacted with prevalent class I and II HLAs in Iran and the world. The designed DNA construct included Nef60-84, Nef126-144, Vpr34-47, Vpr60-75, Gp16030-53, Gp160308-323 and P248-151 epitopes (i.e., nef-vpr-gp160-p24 DNA) which was cloned into pET-24a(+) and pEGFP-N1 vectors. The recombinant polyepitope peptide (rNef-Vpr-Gp160-P24; ~ 32 kDa) was successfully generated in E. coli expression system. The pEGFP-nef-vpr-gp160-p24 and rNef-Vpr-Gp160-P24 polyepitope peptide were delivered into HEK-293 T cells using cell-penetrating peptides (CPPs). The MPG and HR9 CPPs, as well as the novel LDP-NLS and CyLoP-1 CPPs, were utilized for DNA and peptide delivery into the cells, respectively. SEM results confirmed the formation of stable MPG/pEGFP-N1-nef-vpr-gp160-p24, HR9/pEGFP-N1-nef-vpr-gp160-p24, LDP-NLS/rNef-Vpr-Gp160-P24 and CyLoP-1/rNef-Vpr-Gp160-P24 nanoparticles with a diameter of < 200 nm through non-covalent bonds. MTT assay results indicated that these nanoparticles did not have any major toxicity in vitro. Fluorescence microscopy, flow cytometry and western blot data demonstrated that these CPPs could significantly deliver the DNA and peptide constructs into HEK-293 T cells. CONCLUSION: The use of these CPPs can be considered as an approach in HIV vaccine development for in vitro and in vivo delivery of DNA and peptide constructs into mammalian cells.


Asunto(s)
Vacunas contra el SIDA/genética , Péptidos de Penetración Celular/genética , ADN Viral/genética , VIH-1/genética , Proteínas Recombinantes de Fusión/genética , Péptidos de Penetración Celular/metabolismo , Clonación Molecular , Biología Computacional , Simulación por Computador , Epítopos/genética , Células HEK293 , VIH-1/metabolismo , Humanos , Simulación del Acoplamiento Molecular , Nanopartículas , Proteínas Recombinantes de Fusión/metabolismo , Transfección
18.
Immunol Lett ; 212: 70-80, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31254535

RESUMEN

To improve an effective hepatitis C virus (HCV) therapeutic vaccine, induction of a strong and long term HCV antigen-specific immune response is an important parameter. HCV non-structural protein 3 (NS3) has antigenic properties and plays a major role in viral clearance. In this study, DNA constructs encoding HCV NS3 and heat shock protein 27 (Hsp27)-NS3 genes, and the recombinant (r) NS3 and rHsp27-NS3 proteins complexed with HR9 and Cady-2 cell penetrating peptides (CPPs) were utilized to evaluate antibody, cytokine and Granzyme B secretion in mice. Herein, the formation of NS3 and Hsp27-NS3 DNA/ HR9 CPP complexes were revealed by gel retardation assay and protection against DNase and protease. Cady-2 peptide was used to form the nanoparticles with rNS3 and rHsp27-NS3 proteins. The size and charge of the nanoparticles were confirmed by SEM and Zetasizer instruments. Next, in vitro transfection of the nanoparticles was assessed by flow cytometry and western blotting. Finally, humoral and cellular immune responses were evaluated using different modalities in mice. Our data showed that HR9 and Cady-2 could form stable nanoparticles with DNA and proteins, respectively and enhance their delivery into HEK-293 T cells in a non-covalent approach. Furthermore, the heterologous Hsp27-NS3 DNA + HR9 prime/rHsp27-NS3+Cady-2 protein boost elicited a higher Th1 cellular immune response with a predominant IgG2a, IgG2b, IFN-γ profile and strong Granzyme B secretion than those induced by other groups. Briefly, the combination of a natural adjuvant (Hsp27) and CPPs (HR9 and Cady-2) could significantly stimulate effective immune responses as a promising approach for development of HCV therapeutic vaccines.


Asunto(s)
Hepacivirus/inmunología , Hepatitis C/prevención & control , Vacunas contra Hepatitis Viral/inmunología , Proteínas no Estructurales Virales/inmunología , Adyuvantes Inmunológicos/administración & dosificación , Animales , Péptidos de Penetración Celular/administración & dosificación , Modelos Animales de Enfermedad , Femenino , Células HEK293 , Proteínas de Choque Térmico HSP27/administración & dosificación , Proteínas de Choque Térmico HSP27/genética , Proteínas de Choque Térmico HSP27/inmunología , Hepatitis C/inmunología , Hepatitis C/virología , Humanos , Inmunogenicidad Vacunal , Ratones , Proteínas Recombinantes de Fusión/administración & dosificación , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/inmunología , Vacunas de ADN/administración & dosificación , Vacunas de ADN/inmunología , Vacunas contra Hepatitis Viral/administración & dosificación , Proteínas no Estructurales Virales/administración & dosificación , Proteínas no Estructurales Virales/genética
19.
Curr HIV Res ; 17(2): 75-84, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31210114

RESUMEN

BACKGROUND: Among the various types of pharmaceuticals, vaccines have a special place. However, in the case of HIV, nearly after 40 years of its discovery, an effective vaccine still is not available. The reason lies in several facts mainly the variability and smartness of HIV as well as the complexity of the interaction between HIV and immune responses. A robust, effective, and longterm immunity is undoubtedly what a successful preventive vaccine should induce in order to prevent the infection of HIV. Failure of human trials to this end has led to the idea of developing therapeutic vaccines with the purpose of curing already infected patients by boosting their immune responses against the virus. Nevertheless, the exceptional ability of the virus to escape the immune system based on the genetically diverse envelope and variable protein products have made it difficult to achieve an efficient therapeutic vaccine. OBJECTIVE: We aimed at studying and comparing different approaches to HIV therapeutic vaccines. METHODS: In this review, we summarized the human trials undergoing on HIV therapeutic vaccination which are registered in the U.S. clinical trial database (clinicaltrials.gov). These attempts are divided into different tables, according to the type of formulation and application in order to classify and compare their results. RESULT/CONCLUSION: Among several methods applied in studied clinical trials which are mainly divided into DNA, Protein, Peptide, Viral vectors, and Dendritic cell-based vaccines, protein vaccine strategy is based on Tat protein-induced anti-Tat Abs in 79% HIV patients. However, the studies need to be continued to achieve a durable efficient immune response against HIV-1.


Asunto(s)
Vacunas contra el SIDA/uso terapéutico , Infecciones por VIH/prevención & control , Vacunación/tendencias , Vacunas contra el SIDA/clasificación , Vacunas contra el SIDA/inmunología , Ensayos Clínicos como Asunto , Humanos , Vacunación/normas
20.
Curr HIV Res ; 17(1): 33-41, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30843489

RESUMEN

BACKGROUND: Several approaches have not been successful to suppress HIV (Human immunodeficiency virus) infection among infected individuals or to prevent it yet. In order to expand strong HIV specific humoral and cellular responses, Virus-like particles (VLPs) as potential vaccines show significant increase in neutralizing antibodies secretion, T-cell count and also secretion of cytokines. OBJECTIVE: This study aimed at immunological evaluation of VLPs harboring high copy of MPERV3 in BALB/c mice. METHODS: Female BALB/c mice were immunized with homologous and heterologous primeboosting regimens of HIV-1 VLPMPER-V3. Their immune responses were evaluated for humoral responses (Total IgG and IgG isotyping) and cellular responses (IFN-γ, IL-5 secretion, in vitro CTL assay and T cell proliferation) and compared in immunized mice. RESULTS: The data showed robust induction of humoral response in mice groups which received different regimens of VLP. Furthermore, analysis of cytokine profile indicated that the highest IL-5 secretion was related to VLP+M50 group and confirmed the dominance of Th2 immunity in this group. CONCLUSION: This study showed that VLP MPER-V3 as a potential vaccine candidate has the potency as an effective prophylactic vaccine and this finding guarantees further investigations to achieve a promising HIV-1 vaccine candidate.


Asunto(s)
Vacunas contra el SIDA/inmunología , Anticuerpos Anti-VIH/sangre , Proteína gp120 de Envoltorio del VIH/aislamiento & purificación , VIH-1/inmunología , Inmunidad Humoral , Fragmentos de Péptidos/aislamiento & purificación , Vacunas de Partículas Similares a Virus/inmunología , Vacunas contra el SIDA/administración & dosificación , Animales , Femenino , Inmunidad Celular , Inmunoglobulina G/sangre , Ratones Endogámicos BALB C , Células Th2/inmunología , Vacunas de Partículas Similares a Virus/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...