Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Front Cell Infect Microbiol ; 13: 1250080, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37680750

RESUMEN

Introduction: Coccidiosis, a disease caused by intestinal apicomplexan parasites Eimeria, is a threat to poultry production. Eimeria tenella is one of the most pathogenic species, frequently causing a high prevalence of opportunistic infections. Objective: The objective of this study is to investigate the role of the microbiota in the pathogenesis of severe Eimeria tenella infection. Methods: We have previously shown that microbiota can promote parasite development. To study the effect of the microbiota on the pathogenesis of this infection, we used an experimental condition (inoculum of 10 000 oocysts E. tenella INRAE) in which the parasite load is similar between germ-free and conventional broilers at 7 days post-infection (pi). Thirteen conventional and 24 germ-free chickens were infected. Among this latter group, 12 remained germ-free and 12 received a microbiota from conventional healthy chickens at 4 days pi. Caeca and spleens were collected at 7 days pi. Results: Our results demonstrated caecal lesions and epithelium damage in conventional chickens at 7 days pi but not in germ-free infected chickens. Administration of conventional microbiota to germ-free chickens partially restored these deleterious effects. At day 7 pi, both infected conventional and germ-free chickens exhibited increased gene expression of inflammatory mediators, including IL15, IFNγ, TNFα and the anti-inflammatory mediator SOCS1, whereas the inflammatory mediators CXCLi2, CCL20, IL18, CSF1, NOS2, PTGS2, IL1ß, IL6, the receptor CCR2, and the anti-inflammatory mediators TGFß1 and IL10 were upregulated only in infected conventional chickens. Notably, the IL18, PTGS2 gene expression was significantly higher in the infected conventional group. Overall, the inflammatory response enhanced by the microbiota might be in part responsible for higher lesion scores. Epithelial tight junction protein gene expression analysis revealed a significant upregulation of CLDN1 with the infection and microbiota, indicating a potential loss of the intestinal barrier integrity. Conclusion: These observations imply that, during E. tenella infection, the caecal microbiota could trigger an acute inflammatory response, resulting in a loss of intestinal integrity. Increase in bacterial translocation can then lead to the likelihood of opportunistic infections. Hence, modulating the microbiota may offer a promising strategy for improving poultry gut health and limiting caecal coccidiosis.


Asunto(s)
Coccidiosis , Eimeria tenella , Animales , Eimeria tenella/genética , Pollos , Ciclooxigenasa 2 , Interleucina-18 , Inflamación , Coccidiosis/veterinaria
2.
Front Cell Infect Microbiol ; 10: 586934, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33330131

RESUMEN

Salmonella Typhimurium expresses on its outer membrane the protein Rck which interacts with the epidermal growth factor receptor (EGFR) of the plasma membrane of the targeted host cells. This interaction activates signaling pathways, leading to the internalization of Salmonella. Since EGFR plays a key role in cell proliferation, we sought to determine the influence of Rck mediated infection on the host cell cycle. By analyzing the DNA content of uninfected and infected cells using flow cytometry, we showed that the Rck-mediated infection induced a delay in the S-phase (DNA replication phase) of the host cell cycle, independently of bacterial internalization. We also established that this Rck-dependent delay in cell cycle progression was accompanied by an increased level of host DNA double strand breaks and activation of the DNA damage response. Finally, we demonstrated that the S-phase environment facilitated Rck-mediated bacterial internalization. Consequently, our results suggest that Rck can be considered as a cyclomodulin with a genotoxic activity.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa , Salmonella typhimurium , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas Bacterianas , División Celular , Membrana Celular , Salmonella typhimurium/genética , Transducción de Señal
3.
Front Cell Infect Microbiol ; 10: 632556, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33614532

RESUMEN

Coccidiosis is a widespread intestinal disease of poultry caused by a parasite of the genus Eimeria. Eimeria tenella, is one of the most virulent species that specifically colonizes the caeca, an organ which harbors a rich and complex microbiota. Our objective was to study the impact of the intestinal microbiota on parasite infection and development using an original model of germ-free broilers. We observed that germ-free chickens presented significantly much lower load of oocysts in caecal contents than conventional chickens. This decrease in parasite load was measurable in caecal tissue by RT-qPCR at early time points. Histological analysis revealed the presence of much less first (day 2pi) and second generation schizonts (day 3.5pi) in germ-free chickens than conventional chickens. Indeed, at day 3.5pi, second generation schizonts were respectively immature only in germ-free chickens suggesting a lengthening of the asexual phase of the parasite in the absence of microbiota. Accordingly to the consequence of this lengthening, a delay in specific gamete gene expressions, and a reduction of gamete detection by histological analysis in caeca of germ-free chickens were observed. These differences in parasite load might result from an initial reduction of the excystation efficiency of the parasite in the gut of germ-free chickens. However, as bile salts involved in the excystation step led to an even higher excystation efficiency in germ-free compared to conventional chickens, this result could not explain the difference in parasite load. Interestingly, when we shunted the excystation step in vivo by infecting chickens with sporozoites using the cloacal route of inoculation, parasite invasion was similar in germ-free and in conventional chickens but still resulted in significantly lower parasite load in germ-free chickens at day 7pi. Overall, these data highlighted that the absence of intestinal microbiota alters E. tenella replication. Strategies to modulate the microbiota and/or its metabolites could therefore be an alternative approach to limit the negative impact of coccidiosis in poultry.


Asunto(s)
Eimeria tenella , Microbioma Gastrointestinal , Parásitos , Enfermedades de las Aves de Corral , Animales , Pollos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA