Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38352582

RESUMEN

While multiplexed fluorescence imaging is frequently used for in vitro microscopy, extending the technique to whole animal imaging in vivo has remained challenging due to the attenuation and scattering of visible and traditional near infrared (NIR-I) wavelengths. Fluorescence imaging using short-wave infrared (SWIR, 1000 - 1700 nm, a.k.a. NIR-II) light enables deeper tissue penetration for preclinical imaging compared to previous methods due to reduced tissue scattering and minimal background autofluorescence in this optical window. Combining NIR-I excitation wavelengths with multiple distinct SWIR emission peaks presents a tremendous opportunity to distinguish multiple fluorophores with high precision for non-invasive, multiplexed anatomical imaging in small animal models. SWIR-emitting semiconductor quantum dots (QDs) with tunable emission peaks and optical stability have emerged as powerful contrast agents, but SWIR imaging demonstrations have yet to move beyond two-color imaging schemes. In this study, we engineered a set of three high quantum yield lead sulfide/cadmium sulfide (PbS/CdS) core/shell QDs with distinct SWIR emissions ranging from 1100 - 1550 nm and utilize these for simultaneous three-color imaging in mice. We first use QDs to non-invasively track lymphatic drainage, highlighting the detailed network of lymphatic vessels with high-resolution with a widefield imaging over a 2 hr period. We then perform multiplexed imaging with all three QDs to distinctly visualize the lymphatic system and spatially overlapping vasculature network. This work establishes optimized SWIR QDs for next-generation multiplexed preclinical imaging, moving beyond the capability of previous dual-labeling techniques. The capacity to discriminate several fluorescent labels through non-invasive NIR-I excitation and SWIR detection unlocks numerous opportunities for studies of disease progression, drug biodistribution, and cell trafficking dynamics in living organisms.

2.
Nano Lett ; 21(7): 3271-3279, 2021 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-33755481

RESUMEN

This report of the reddest emitting indium phosphide quantum dots (InP QDs) to date demonstrates tunable, near-infrared (NIR) photoluminescence (PL) as well as PL multiplexing in the first optical tissue window while avoiding toxic constituents. This synthesis overcomes the InP "growth bottleneck" and extends the emission peak of InP QDs deeper into the first optical tissue window using an inverted QD heterostructure, specifically ZnSe/InP/ZnS core/shell/shell nanoparticles. The QDs exhibit InP shell thickness-dependent tunable emission with peaks ranging from 515-845 nm. The high absorptivity of InP yields effective photoexcitation of the QDs with UV, visible, and NIR wavelengths. These nanoparticles extend the range of tunable direct-bandgap emission from InP-based nanostructures, effectively overcoming a synthetic barrier that has prevented InP-based QDs from reaching their full potential as NIR imaging agents. Multiplexed lymph node imaging in a mouse model demonstrates the potential of the NIR-emitting InP particles for in vivo imaging.


Asunto(s)
Fosfinas , Puntos Cuánticos , Animales , Indio , Ratones , Compuestos de Zinc
3.
Chem Mater ; 33(18): 7527-7536, 2021 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-35221489

RESUMEN

The focus on heavy metal-free semiconductor nanocrystals has increased interest in ZnSe semiconductor quantum dots (QDs) over the past decade. Reliable and consistent incorporation of ZnSe cores into core/shell heterostructures or devices requires empirical fit equations correlating the lowest-energy electron transition (1S peak) to their size and molar extinction coefficients (ε). While these equations are known and heavily used for CdSe, CdTe, CdS, PbS, etc., they are not well established for ZnSe and are nonexistent for ZnSe QDs with diameters <3.5 nm. In this study, a series of ZnSe QDs with diameters ranging from 2 to 6 nm were characterized by small-angle X-ray scattering (SAXS), transmission electron microscopy (TEM), UV-vis spectroscopy, and microwave plasma atomic emission spectroscopy (MP-AES). SAXS-based size analysis enabled the practical inclusion of small particles in the evaluation, and elemental analysis with MP-AES elucidates a nonstoichiometric Zn:Se ratio consistent with zinc-terminated spherical ZnSe QDs. Using these combined results, empirical fit equations correlating QD size with its lowest-energy electron transition (i.e., 1S peak position), Zn:Se ratio, and molar extinction coefficients for 1S peak, 1S integral, and high-energy wavelengths are reported. Finally, the equations are used to track the evolution of a ZnSe core reaction. These results will enable the consistent and reliable use of ZnSe core particles in complex heterostructures and devices.

4.
Methods Mol Biol ; 2135: 95-108, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32246330

RESUMEN

The utility of quantum dots (QDs) for biological applications is predicated on stably dispersing the particles in aqueous media. During transfer from apolar organic solvents to water, the optical properties of the fluorescent nanoparticles must be maintained; additionally, the resulting colloid should be monodisperse and stable against aggregation. Furthermore, the hydrophilic coating should confer functional groups or conjugation handles to the QDs, as biofunctionalization is often critical to biosensing and bioimaging applications. Micelle encapsulation is an excellent technique for conferring hydrophilicity and conjugation handles to QDs. One interesting conjugation handle that can easily be added to the QDs is an azide group, which conjugates to strained alkynes via strain promoted azide-alkyne cycloaddition (SPAAC) reactions. SPAAC, or copper-free click chemistry, utilizes very mild reaction conditions, involves reactive groups that are bio-orthogonal, and is nearly quantitative. Micelle encapsulation is also very mild and preserves the optical properties of the QDs nearly perfectly. The combination of these approaches comprises a mild, effective, and straightforward approach to preparing functionalized QDs for biological applications.


Asunto(s)
Química Clic/métodos , Micelas , Puntos Cuánticos/química , Alquinos/química , Azidas/química , Catálisis , Reacción de Cicloadición , Interacciones Hidrofóbicas e Hidrofílicas , Lípidos/química , Polietilenglicoles/química
5.
Nano Lett ; 20(3): 1980-1991, 2020 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-31999467

RESUMEN

Semiconductor quantum dots (QDs) are attractive fluorescent contrast agents for in vivo imaging due to their superior photophysical properties, but traditional QDs comprise toxic materials such as cadmium or lead. Copper indium sulfide (CuInS2, CIS) QDs have been posited as a nontoxic and potentially clinically translatable alternative; however, previous in vivo studies utilized particles with a passivating zinc sulfide (ZnS) shell, limiting direct evidence of the biocompatibility of the underlying CIS. For the first time, we assess the biodistribution and toxicity of unshelled CIS and partially zinc-alloyed CISZ QDs in a murine model. We show that bare CIS QDs breakdown quickly, inducing significant toxicity as seen in organ weight, blood chemistry, and histology. CISZ demonstrates significant, but lower, toxicity compared to bare CIS, while our measurements of core/shell CIS/ZnS are consistent with literature reports of general biocompatibility. In vitro cytotoxicity is dose-dependent on the amount of metal released due to particle degradation, linking degradation to toxicity. These results challenge the assumption that removing heavy metals necessarily reduces toxicity: indeed, we find comparable in vitro cytotoxicity between CIS and CdSe QDs, while CIS caused severe toxicity in vivo compared to CdSe. In addition to highlighting the complexity of nanotoxicity and the differences between the in vitro and in vivo outcomes, these unexpected results serve as a reminder of the importance of assessing the biocompatibility of core QDs absent the protective ZnS shell when making specific claims of compositional biocompatibility.


Asunto(s)
Cobre , Citotoxinas , Indio , Puntos Cuánticos , Sulfuros , Animales , Cobre/química , Cobre/farmacocinética , Cobre/farmacología , Citotoxinas/química , Citotoxinas/farmacocinética , Citotoxinas/farmacología , Relación Dosis-Respuesta a Droga , Femenino , Células Hep G2 , Humanos , Indio/química , Indio/farmacocinética , Indio/farmacología , Ratones , Ratones Endogámicos BALB C , Puntos Cuánticos/química , Puntos Cuánticos/uso terapéutico , Sulfuros/química , Sulfuros/farmacocinética , Sulfuros/farmacología
6.
J Am Coll Cardiol ; 59(6): 616-26, 2012 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-22300697

RESUMEN

OBJECTIVES: This study sought to evaluate the in vivo magnetic resonance imaging (MRI) efficacy of manganese [Mn(II)] molecular imaging probes targeted to oxidation-specific epitopes (OSE). BACKGROUND: OSE are critical in the initiation, progression, and destabilization of atherosclerotic plaques. Gadolinium [Gd(III)]-based MRI agents can be associated with systemic toxicity. Mn is an endogenous, biocompatible, paramagnetic metal ion that has poor MR efficacy when chelated, but strong efficacy when released within cells. METHODS: Multimodal Mn micelles were generated to contain rhodamine for confocal microscopy and conjugated with either the murine monoclonal IgG antibody MDA2 targeted to malondialdehyde (MDA)-lysine epitopes or the human single-chain Fv antibody fragment IK17 targeted to MDA-like epitopes ("targeted micelles"). Micelle formulations were characterized in vitro and in vivo, and their MR efficacy (9.4-T) evaluated in apolipoprotein-deficient (apoE(-/-)) and low-density lipoprotein receptor negative (LDLR(-/-)) mice (0.05 mmol Mn/kg dose) (total of 120 mice for all experiments). In vivo competitive inhibition studies were performed to evaluate target specificity. Untargeted, MDA2-Gd, and IK17-Gd micelles (0.075 mmol Gd/kg) were included as controls. RESULTS: In vitro studies demonstrated that targeted Mn micelles accumulate in macrophages when pre-exposed to MDA-LDL with ∼10× increase in longitudinal relativity. Following intravenous injection, strong MR signal enhancement was observed 48 to 72 h after administration of targeted Mn micelles, with colocalization within intraplaque macrophages. Co-injection of free MDA2 with the MDA2-Mn micelles resulted in full suppression of MR signal in the arterial wall, confirming target specificity. Similar MR efficacy was noted in apoE(-/-) and LDLR(-/-) mice with aortic atherosclerosis. No significant differences in MR efficacy were noted between targeted Mn and Gd micelles. CONCLUSIONS: This study demonstrates that biocompatible multimodal Mn-based molecular imaging probes detect OSE within atherosclerotic plaques and may facilitate clinical translation of noninvasive imaging of human atherosclerosis.


Asunto(s)
Materiales Biocompatibles , Lipoproteínas/química , Espectroscopía de Resonancia Magnética/métodos , Manganeso , Placa Aterosclerótica/metabolismo , Animales , Modelos Animales de Enfermedad , Epítopos , Ratones , Ratones Noqueados , Micelas , Oxidación-Reducción , Placa Aterosclerótica/diagnóstico , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...