Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 9 de 9
1.
Biophys J ; 2024 Mar 26.
Article En | MEDLINE | ID: mdl-38532626

T cells coordinate intercellular communication through the meticulous regulation of cytokine secretion. Direct visualization of vesicular transport and intracellular distribution of cytokines provides valuable insights into the temporal and spatial mechanisms involved in regulation. Employing Jurkat E6-1 T cells and interleukin-2 (IL-2) as a model system, we investigated vesicular dynamics using single-particle tracking and the nanoscale distribution of intracellular IL-2 in fixed T cells using superresolution microscopy. Live-cell imaging revealed that in vitro activation resulted in increased vesicular dynamics. Direct stochastic optical reconstruction microscopy and 3D structured illumination microscopy revealed nanoscale clustering of IL-2. In vitro activation correlated with spatial accumulation of IL-2 nanoclusters into more pronounced and elongated clusters. These observations provide visual evidence that accelerated vesicular transport and spatial concatenation of IL-2 clusters at the nanoscale may constitute a potential mechanism for modulating cytokine release by Jurkat T cells.

2.
bioRxiv ; 2024 Mar 06.
Article En | MEDLINE | ID: mdl-38496456

We present single-molecule labeling and localization microscopy (SMLLM) using dye-conjugated phalloidin to achieve enhanced superresolution imaging of filamentous actin (F-actin). We demonstrate that the intrinsic phalloidin dissociation enables SMLLM in an imaging buffer containing low concentrations of dye-conjugated phalloidin. We further show enhanced single-molecule labeling by chemically promoting phalloidin dissociation. Two benefits of phalloidin-based SMLLM are better preservation of cellular structures sensitive to mechanical and shear forces during standard sample preparation and more consistent F-actin quantification at the nanoscale. In a proof-of-concept study, we employed SMLLM to super-resolve F-actin structures in U2OS and dendritic cells (DCs) and demonstrate more consistent F-actin quantification in the cell body and structurally delicate cytoskeletal proportions, which we termed membrane fibers, of DCs compared to direct stochastic optical reconstruction microscopy (dSTORM). Using DC2.4 mouse dendritic cells as the model system, we show F-actin redistribution from podosomes to actin filaments and altered prevalence of F-actin-associated membrane fibers on the culture glass surface after lipopolysaccharide exposure. While our work demonstrates SMLLM for F-actin, the concept opens new possibilities for protein-specific single-molecule labeling and localization in the same step using commercially available reagents.

3.
Clin Cancer Res ; 30(5): 1054-1066, 2024 03 01.
Article En | MEDLINE | ID: mdl-38165708

PURPOSE: Many peripheral and cutaneous T-cell lymphoma (CTCL) subtypes are poorly responsive to conventional chemotherapeutic agents and associated with dismal outcomes. The zinc finger transcription factor GATA-3 and the transcriptional program it instigates are oncogenic and highly expressed in various T-cell neoplasms. Posttranslational acetylation regulates GATA-3 DNA binding and target gene expression. Given the widespread use of histone deacetylase inhibitors (HDACi) in relapsed/refractory CTCL, we sought to examine the extent to which these agents attenuate the transcriptional landscape in these lymphomas. EXPERIMENTAL DESIGN: Integrated GATA-3 chromatin immunoprecipitation sequencing and RNA sequencing analyses were performed in complementary cell line models and primary CTCL specimens treated with clinically available HDACi. RESULTS: We observed that exposure to clinically available HDACi led to significant transcriptional reprogramming and increased GATA-3 acetylation. HDACi-dependent GATA-3 acetylation significantly impaired both its ability to bind DNA and transcriptionally regulate its target genes, thus leading to significant transcriptional reprogramming in HDACi-treated CTCL. CONCLUSIONS: Beyond shedding new light on the mechanism of action associated with HDACi in CTCL, these findings have significant implications for their use, both as single agents and in combination with other novel agents, in GATA-3-driven lymphoproliferative neoplasms.


Lymphoma, T-Cell, Cutaneous , Skin Neoplasms , Humans , Lymphoma, T-Cell, Cutaneous/drug therapy , Lymphoma, T-Cell, Cutaneous/genetics , Acetylation , Histone Deacetylase Inhibitors/pharmacology , DNA , Transcription, Genetic
4.
Bioconjug Chem ; 34(5): 825-833, 2023 05 17.
Article En | MEDLINE | ID: mdl-37145839

We present a versatile single-molecule localization microscopy technique utilizing time-lapse imaging of single-antibody labeling. By performing single-molecule imaging in the subminute time scale and tuning the antibody concentration to create sparse single-molecule binding, we captured antibody labeling of subcellular targets to generate superresolution images. Single-antibody labeling enabled dual-target superresolution imaging using dye-conjugated monoclonal and polyclonal antibodies. We further demonstrate a dual-color strategy to increase the sample labeling density. Single-antibody labeling paves a new way to evaluate antibody binding for superresolution imaging in the native cellular environment.


Antibodies , Single Molecule Imaging , Microscopy, Fluorescence/methods , Extracellular Space , Fluorescent Dyes/chemistry
5.
Blood Cancer J ; 12(11): 149, 2022 11 04.
Article En | MEDLINE | ID: mdl-36329027

Neoplasms originating from thymic T-cell progenitors and post-thymic mature T-cell subsets account for a minority of lymphoproliferative neoplasms. These T-cell derived neoplasms, while molecularly and genetically heterogeneous, exploit transcription factors and signaling pathways that are critically important in normal T-cell biology, including those implicated in antigen-, costimulatory-, and cytokine-receptor signaling. The transcription factor GATA-3 regulates the growth and proliferation of both immature and mature T cells and has recently been implicated in T-cell neoplasms, including the most common mature T-cell lymphoma observed in much of the Western world. Here we show that GATA-3 is a proto-oncogene across the spectrum of T-cell neoplasms, including those derived from T-cell progenitors and their mature progeny, and further define the transcriptional programs that are GATA-3 dependent, which include therapeutically targetable gene products. The discovery that p300-dependent acetylation regulates GATA-3 mediated transcription by attenuating DNA binding has novel therapeutic implications. As most patients afflicted with GATA-3 driven T-cell neoplasms will succumb to their disease within a few years of diagnosis, these findings suggest opportunities to improve outcomes for these patients.


DNA-Binding Proteins , Neoplasms , Humans , Cell Differentiation , DNA-Binding Proteins/genetics , Neoplasms/metabolism , Proto-Oncogenes/genetics , T-Lymphocyte Subsets , Leukemia, Lymphoid
6.
Nano Lett ; 22(10): 4020-4027, 2022 05 25.
Article En | MEDLINE | ID: mdl-35499493

Dendritic cells (DCs) can infiltrate tight junctions of the epithelium to collect remote antigens during immune surveillance. While elongated membrane structures represent a plausible structure to perform this task, their functional mechanisms remain elusive owing to the lack of high-resolution characterizations in live DCs. Here, we developed fluorescent artificial antigens (FAAs) based on quantum dots coated with polyacrylic acid. Single-particle tracking of FAAs enables us to superresolve the membrane fiber network responsible for the antigen uptake. Using the DC2.4 cell line as a model system, we discovered the extensive membrane network approaching 200 µm in length with tunnel-like cavities about 150 nm in width. The membrane fiber network also contained heterogeneous circular migrasomes. Disconnecting the membrane network from the cell body decreased the intracellular FAA density. Our study enables mechanistic investigations of DC membrane networks and nanocarriers that target this mechanism.


Dendritic Cells , Quantum Dots , Antigens , Cell Line , Vaccines, Synthetic
7.
Elife ; 102021 09 27.
Article En | MEDLINE | ID: mdl-34569930

Transient receptor potential melastatin 7 (TRPM7) contributes to a variety of physiological and pathological processes in many tissues and cells. With a widespread distribution in the nervous system, TRPM7 is involved in animal behaviors and neuronal death induced by ischemia. However, the physiological role of TRPM7 in central nervous system (CNS) neuron remains unclear. Here, we identify endocytic defects in neuroendocrine cells and neurons from TRPM7 knockout (KO) mice, indicating a role of TRPM7 in synaptic vesicle endocytosis. Our experiments further pinpoint the importance of TRPM7 as an ion channel in synaptic vesicle endocytosis. Ca2+ imaging detects a defect in presynaptic Ca2+ dynamics in TRPM7 KO neuron, suggesting an importance of Ca2+ influx via TRPM7 in synaptic vesicle endocytosis. Moreover, the short-term depression is enhanced in both excitatory and inhibitory synaptic transmissions from TRPM7 KO mice. Taken together, our data suggests that Ca2+ influx via TRPM7 may be critical for short-term plasticity of synaptic strength by regulating synaptic vesicle endocytosis in neurons.


Endocytosis , Neural Inhibition , Neuronal Plasticity , Neurons/metabolism , Synaptic Transmission , Synaptic Vesicles/metabolism , TRPM Cation Channels/metabolism , Animals , Calcium/metabolism , Calcium Signaling , Chromaffin Cells/metabolism , Excitatory Postsynaptic Potentials , Female , HEK293 Cells , Humans , Inhibitory Postsynaptic Potentials , Kinetics , Male , Mice, Knockout , Synaptic Vesicles/genetics , TRPM Cation Channels/genetics
8.
Sci Rep ; 11(1): 15488, 2021 07 29.
Article En | MEDLINE | ID: mdl-34326382

The spatial organization of T cell receptors (TCRs) correlates with membrane-associated signal amplification, dispersion, and regulation during T cell activation. Despite its potential clinical importance, quantitative analysis of the spatial arrangement of TCRs from standard fluorescence images remains difficult. Here, we report Statistical Classification Analyses of Membrane Protein Images or SCAMPI as a technique capable of analyzing the spatial arrangement of TCRs on the plasma membrane of T cells. We leveraged medical image analysis techniques that utilize pixel-based values. We transformed grayscale pixel values from fluorescence images of TCRs into estimated model parameters of partial differential equations. The estimated model parameters enabled an accurate classification using linear discrimination techniques, including Fisher Linear Discriminant (FLD) and Logistic Regression (LR). In a proof-of-principle study, we modeled and discriminated images of fluorescently tagged TCRs from Jurkat T cells on uncoated cover glass surfaces (Null) or coated cover glass surfaces with either positively charged poly-L-lysine (PLL) or TCR cross-linking anti-CD3 antibodies (OKT3). Using 80 training images and 20 test images per class, our statistical technique achieved 85% discrimination accuracy for both OKT3 versus PLL and OKT3 versus Null conditions. The run time of image data download, model construction, and image discrimination was 21.89 s on a laptop computer, comprised of 20.43 s for image data download, 1.30 s on the FLD-SCAMPI analysis, and 0.16 s on the LR-SCAMPI analysis. SCAMPI represents an alternative approach to morphology-based qualifications for discriminating complex patterns of membrane proteins conditioned on a small sample size and fast runtime. The technique paves pathways to characterize various physiological and pathological conditions using the spatial organization of TCRs from patient T cells.


Image Processing, Computer-Assisted/methods , Receptors, Antigen, T-Cell/physiology , T-Lymphocytes/metabolism , Calcium/metabolism , Cell Membrane/metabolism , Cluster Analysis , Discriminant Analysis , Humans , Jurkat Cells , Lymphocyte Activation/immunology , Microscopy, Fluorescence , Models, Statistical , Probability , Regression Analysis , Statistics as Topic , T-Lymphocytes/immunology
9.
Nanoscale ; 13(10): 5519-5529, 2021 Mar 18.
Article En | MEDLINE | ID: mdl-33688882

We report single-particle characterization of membrane-penetrating semiconductor quantum dots (QDs) in T cell lymphocytes. We functionalized water-soluble CdSe/CdZnS QDs with a cell-penetrating peptide composed of an Asp-Ser-Ser (DSS) repeat sequence. DSS and peptide-free control QDs displayed concentration-dependent internalization. Intensity profiles from single-particle imaging revealed a propensity of DSS-QDs to maintain a monomeric state in the T cell cytosol, whereas control QDs formed pronounced clusters. Single-particle tracking showed a direct correlation between individual QD clusters' mobility and aggregation state. A significant portion of control QDs colocalized with an endosome marker inside the T cells, while the percentage of DSS-QDs colocalized dropped to 9%. Endocytosis inhibition abrogated the internalization of control QDs, while DSS-QD internalization only mildly decreased, suggesting an alternative cell-entry mechanism. Using 3D single-particle tracking, we captured the rapid membrane-penetrating activity of a DSS-QD. The ability to characterize membrane penetrating activities in live T cells creates inroads for the optimization of gene therapy and drug delivery through the use of novel nanomaterials.


Pharmaceutical Preparations , Quantum Dots , Cytosol , Immunotherapy , T-Lymphocytes
...