Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 338: 139622, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37487982

RESUMEN

The presence of heavy metal (HM) ions, such as lead, cadmium, and chromium in industrial wastewater discharge are major contaminants that pose a risk to human health. These HMs should separate from the wastewater to ensure the reuse of the discharged water in the process and mitigate their environmental impacts. The distinctive mechanical properties of 2D graphene oxide (GO), and the antifouling characteristics of metal oxides (ZnO/NiO) nanoparticles combined to produce composites supporting special features for wastewater treatment. This study employed solution casting and phase inversion methods to synthesize PSF-based GO, ZnO-GO, and ZnO-GO-NiO mixed matrix membranes and the effects of variation in composition on the removal of lead (Pb2+) and cadmium (Cd2+) ion was examined. Several characterization techniques including X-ray diffraction analysis, scanning electron microscopy, energy dispersive X-ray, and Fourier transform infrared spectroscopy were applied to analyze the synthesized NPs and MMMs. The composite membranes were also analyzed in terms of their porosity, permeability, hydrophilicity, surface roughness, zeta potential, thermal stability, mechanical strength, and flux regeneration at various transmembrane pressures (2-3 kgcm-2), and pH value (5.5). The highest adsorption capacities were measured to be 308.16 mg g-1 and 354.80 mg g-1 for Pb (II) and Cd (II), respectively, for membrane (M4_A) having 0.3 wt% of ZnO-GO-NiO nanocomposite, at 200 mg L-1 of feed concentration and 1.60 mL min-1 of permeate flux. The Pb (II) and Cd (II) adsorption breakthrough curves were created, and the results of the experiment were compared with the data of the Thomas model.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Óxido de Zinc , Humanos , Cadmio/análisis , Aguas Residuales , Plomo/análisis , Metales Pesados/análisis , Óxidos/análisis , Adsorción , Contaminantes Químicos del Agua/análisis , Cinética , Iones/análisis
2.
Chemosphere ; 336: 139213, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37331660

RESUMEN

Electronic are usually constructed from non-renewable, non-biodegradable, and hazardous materials. Due to the frequent upgrading or discarding of electronic devices, which contributes significantly to environmental pollution, there is a high demand for electronics made from renewable and biodegradable materials with less harmful components. To this end, due to their flexibility, strong mechanical, and optical properties, wood-based electronics have become very appealing as substrates especially for flexible electronics and optoelectronics. However, incorporating numerous features including high conductivity and transparency, flexibility, and mechanical robustness into an environmentally friendly electronic device remains very challenging. Herein, authors have provided the techniques used to fabricate sustainable wood based flexible electronics coupled with their chemical, mechanical, optical, thermal, thermomechanical, and surface properties for various applications. Additionally, the synthesis of a conductive ink based on lignin and the development of translucent wood as a substrate are covered. Future developments and broader applications of wood-based flexible materials are discussed in the final section of the study, with an emphasis on their potential in fields including wearable electronics, renewable energy, and biomedical devices. This research improves upon prior efforts by demonstrating new ways to simultaneously attain better mechanical and optical qualities and environmental sustainability.


Asunto(s)
Dispositivos Electrónicos Vestibles , Madera , Electrónica , Lignina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...