Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
2.
BMC Musculoskelet Disord ; 20(1): 417, 2019 Sep 06.
Article En | MEDLINE | ID: mdl-31492126

BACKGROUND: Biomechanical changes in articular cartilage are associated with the onset of osteoarthritis. We developed an optical coherence tomography-based strain rate tomography method: stress relaxation optical coherence straingraphy (SR-OCSA). The purpose of this study was to establish an approach for measuring mechanical properties of articular cartilage using SR-OCSA, and to investigate the distribution of viscoelastic properties of articular cartilage in early osteoarthritis. METHODS: Anterior cruciate ligament transection surgery was performed on the left knees of 8-9-month-old New Zealand white rabbits. SR-OCSA was used to visualize and measure the viscoelastic properties of articular cartilage via attenuation coefficient of strain rate (ACSR). Using the same conditions as in the SR-OCSA test, an indentation test was conducted, and relaxation time was measured to evaluate the relationship between ACSR and relaxation time. RESULTS: SR-OCSA could nondestructively detect and visualize changes in the distribution of viscoelastic properties of articular cartilage in early osteoarthritis. SR-OCSA captured significant increases in ACSR in cartilage at 2 weeks after surgery, when a histologically slight osteoarthritis sign was present. As cartilage degeneration progressed, ACSR increased, whereas relaxation time decreased in a time-dependent manner. Moreover, ACSR negatively correlated with relaxation time. In particular, ACSR was elevated around the tidemark and the elevation tended to move as cartilage degeneration progressed. CONCLUSIONS: SR-OCSA could tomographically and nondestructively detect and visualize changes in the distribution of viscoelastic properties of articular cartilage in early osteoarthritis. The mechanical properties around the tidemark were degraded as cartilage degeneration progressed. Thus, SR-OCSA provides important data needed to understand the biomechanics of early osteoarthritis.


Cartilage, Articular/pathology , Knee Joint/pathology , Osteoarthritis, Knee/diagnostic imaging , Tomography, Optical Coherence/methods , Animals , Anterior Cruciate Ligament/surgery , Cartilage, Articular/diagnostic imaging , Disease Models, Animal , Elasticity , Female , Humans , Knee Joint/diagnostic imaging , Osteoarthritis, Knee/etiology , Osteoarthritis, Knee/pathology , Rabbits , Stress, Mechanical , Time Factors
...