Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Philos Trans R Soc Lond B Biol Sci ; 379(1905): 20230195, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38768198

RESUMEN

Many group-living animals coordinate social behaviours using contact calls, which can be produced for all group members or targeted at specific individuals. In the disc-winged bat, Thyroptera tricolor, group members use 'inquiry' and 'response' calls to coordinate daily movements into new roosts (furled leaves). Rates of both calls show consistent among-individual variation, but causes of within-individual variation remain unknown. Here, we tested whether disc-winged bats produce more contact calls towards group members with higher kinship or association. In 446 experimental trials, we recorded 139 random within-group pairs of one flying bat (producing inquiry calls for roost searching) and one roosting bat (producing response calls for roost advertising). Using generalized linear mixed-effect models (GLMM), we assessed how response and inquiry calling rates varied by sender, receiver, genetic kinship and co-roosting association rate. Calling rates varied consistently across senders but not by receiver. Response calling was influenced by inquiry calling rates, but neither calling rate was higher when the interacting pair had higher kinship or association. Rather than dyadic calling rates indicating within-group relationships, our findings are consistent with the hypothesis that bats produce contact calls to maintain contact with any or all individuals within a group while collectively searching for a new roost site. This article is part of the theme issue 'The power of sound: unravelling how acoustic communication shapes group dynamics'.


Asunto(s)
Quirópteros , Conducta Social , Vocalización Animal , Quirópteros/fisiología , Animales , Masculino , Femenino
2.
Philos Trans R Soc Lond B Biol Sci ; 379(1905): 20230187, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38768206

RESUMEN

Theoretical work suggests that having many informed individuals within social groups can promote efficient resource location. However, it may also give rise to group fragmentation if members fail to reach consensus on their direction of movement. In this study, we investigate whether the number of informed individuals, exemplified by bats emitting calls from different roosts, influences group cohesion in Spix's disk-winged bats (Thyroptera tricolor). Additionally, we explore the role of signal reliability, quantified through signalling rates, in group consensus on where to roost. These bats use contact calls to announce the location of a roost site and recruit conspecifics. The groups they form exhibit high levels of cohesion and consist of both vocal and non-vocal bats, with vocal behaviour being consistent over time. Our findings revealed that an increase in the number of roosts broadcasting calls is strongly associated with the likelihood of groups fragmenting among multiple roosts. Additionally, we found that a majority of group members enter the roost with higher calling rates. This phenomenon can mitigate the risk of group fragmentation, as bats emitting more calls may contribute to greater group consensus on roosting locations, thereby reducing the likelihood of individuals separating and enhancing overall group cohesion. Our results highlight the potential costs of having too many information producers for group coordination, despite their established role in finding critical resources. This article is part of the theme issue 'The power of sound: unravelling how acoustic communication shapes group dynamics'.


Asunto(s)
Quirópteros , Toma de Decisiones , Conducta Social , Vocalización Animal , Animales , Quirópteros/fisiología , Toma de Decisiones/fisiología , Masculino
3.
J Exp Biol ; 224(14)2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34226938

RESUMEN

Long-term social aggregations are maintained by multiple mechanisms, including the use of acoustic signals, which may nonetheless entail significant energetic costs. To date, however, no studies have gauged whether there are significant energetic costs to social call production in bats, which heavily rely on acoustic communication for a diversity of social tasks. We measured energetic expenditure during acoustic signaling in Spix's disc-winged bats (Thyroptera tricolor), a species that commonly uses contact calls to locate the ephemeral furled leaves that they use for roosting. To determine the cost of sound production, we measured oxygen consumption using intermittent-flow respirometry methods, with and without social signaling. Our results show that the emission of contact calls significantly increases oxygen consumption; vocal individuals spent, on average, 12.42 kJ more during social signaling trials than they spent during silent trials. We also found that as resting metabolic rate increased in males, there was a decreasing probability that they would emit response calls. These results provide support to the 'allocation model', which predicts that only individuals with lower self-maintenance costs can afford to spend energy in additional activities. Our results provide a step forward in our understanding of how physiology modulates behavior, specifically how the costs of call production and resting metabolic rate may explain the differences in vocal behavior among individuals.


Asunto(s)
Quirópteros , Acústica , Comunicación Animal , Animales , Humanos , Masculino
4.
Ecol Evol ; 6(17): 6050-63, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27648225

RESUMEN

Although coloniality is widespread among mammals, it is still not clear what factors influence composition of social groups. As animals need to adapt to multiple habitat and environmental conditions throughout their range, variation in group composition should be influenced by adaptive adjustment to different ecological factors. Relevant to anthropogenic disturbance, increased habitat modification by humans can alter species' presence, density, and population structure. Therefore, it is important to understand the consequences of changes to landscape composition, in particular how habitat modification affects social structure of group-forming organisms. Here, we combine information on roosting associations with genetic structure of Peter's tent-roosting bats, Uroderma bilobatum to address how different habitat characteristics at different scales affect structure of social groups. By dividing analyses by age and sex, we determined that genetic structure was greater for adult females than adult males or offspring. Habitat variables explained 80% of the variation in group relatedness (mainly influenced by female relatedness) with roost characteristics contributing the most explained variation. This suggests that females using roosts of specific characteristics exhibit higher relatedness and seem to be philopatric. These females mate with more males than do more labile female groups. Results describe ecological and microevolutionary processes, which affect relatedness and social structure; findings are highly relevant to species distributions in both natural and human-modified environments.

5.
Conserv Biol ; 29(6): 1666-73, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26081600

RESUMEN

Understanding causes and consequences of ecological specialization is of major concern in conservation. Specialist species are particularly vulnerable to human activities. If their food or habitats are depleted or lost, they may not be able to exploit alternative resources, and population losses may result. We examined International Union for Conservation of Nature (IUCN) Red List bat data and the number of roosts used per species (accounting for phylogenetic independence) to determine whether roost specialization is correlated with extinction risk. We found a significant correlation between the IUCN Red List category and the number of roost types used. Species that use fewer roost types had a higher risk of extinction. We found that caves and similar structures were the most widely used roost types, particularly by species under some level of risk of extinction. Many critically endangered, endangered, or vulnerable species used natural roosts exclusively, whereas less threatened species used natural and human-made roosts. Our results suggest that roost loss, particularly in species that rely on a single roost type, may be linked to extinction risk. Our focus on a single life history trait prevented us from determining how important this variable is for extinction risk relative to other variables, but we have taken a first step toward prioritizing conservation actions. Our results also suggest that roost specialization may exacerbate population declines due to other risk factors, such as hunting pressure or habitat loss, and thus that management actions to preserve species under risk of extinction should prioritize protection of roosting sites.


Asunto(s)
Quirópteros/fisiología , Conservación de los Recursos Naturales , Ecosistema , Especies en Peligro de Extinción , Extinción Biológica , Animales , Cuevas , Medición de Riesgo
6.
PLoS One ; 8(4): e61731, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23637893

RESUMEN

Social animals regularly face the problem of relocating conspecifics when separated. Communication is one of the most important mechanisms facilitating group formation and cohesion. Known as contact calls, signals exchanged between conspecifics that permit group maintenance are widespread across many taxa. Foliage-roosting bats are an excellent model system for studying the evolution of contact calling, as there are opportunities to compare closely related species that exhibit major differences in ecology and behavior. Further, foliage-roosting bats rely on relatively ephemeral roosts, which leads to major challenges in maintaining group cohesion. Here, we report findings on the communication signals produced by two tent-making bats, Dermanura watsoni and Ectophylla alba. We found that both species produced calls in the early morning near the roost that were associated with roostmate recruitment. Calling often ended once other bats arrived at the tent, suggesting that calls may be involved in roostmate recruitment and group formation. The structure and function of these calls are described and future research directions are discussed.


Asunto(s)
Comunicación Animal , Quirópteros/fisiología , Animales , Femenino , Masculino , Comportamiento de Nidificación , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...