Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Genet ; 14: 1120185, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36741325

RESUMEN

In the world, colon cancer is regarded as one of the most common deadly cancer. Due to the lack of a better understanding of its prognosis system, this prevailing cancer has the second-highest morbidity and mortality rate compared with other cancers. A variety of genes are responsible to participate in colon cancer and the molecular mechanism is almost unsure. In addition, various studies have been done to identify the differentially expressed genes to investigate the dysfunctions of the genes but most of them did it individually. In this study, we constructed a functional interaction network for identifying the group of genes that conduct cellular functions and Protein-Protein Interaction network, which aims to better understanding protein functions and their biological relationships. A functional evolution network was also generated to analyze the dysfunctions from initial stage to later stage of colon cancer by investigating the gene modules and their molecular functions. The results show that the proposed evolution network is able to detect the significant cellular functions, which can be used to explore the evolution process of colon cancer. Moreover, a total of 10 core genes associated with colon cancer were identified, which were INS, SNAP25, GRIA2, SST, GCG, PVALB, SLC17A7, SLC32A1, SLC17A6, and NPY, respectively. The responsible candidate genes and corresponding pathways presented in this study could be used to develop new tumor indicators and novel therapeutic targets for the prevention and treatment of colon cancer.

2.
Arch Comput Methods Eng ; 30(2): 985-1040, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36373091

RESUMEN

Differential evolution (DE) is one of the highly acknowledged population-based optimization algorithms due to its simplicity, user-friendliness, resilience, and capacity to solve problems. DE has grown steadily since its beginnings due to its ability to solve various issues in academics and industry. Different mutation techniques and parameter choices influence DE's exploration and exploitation capabilities, motivating academics to continue working on DE. This survey aims to depict DE's recent developments concerning parameter adaptations, parameter settings and mutation strategies, hybridizations, and multi-objective variants in the last twelve years. It also summarizes the problems solved in image processing by DE and its variants.

3.
Arch Comput Methods Eng ; 30(1): 391-426, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36059575

RESUMEN

The Moth flame optimization (MFO) algorithm belongs to the swarm intelligence family and is applied to solve complex real-world optimization problems in numerous domains. MFO and its variants are easy to understand and simple to operate. However, these algorithms have successfully solved optimization problems in different areas such as power and energy systems, engineering design, economic dispatch, image processing, and medical applications. A comprehensive review of MFO variants is presented in this context, including the classic version, binary types, modified versions, hybrid versions, multi-objective versions, and application part of the MFO algorithm in various sectors. Finally, the evaluation of the MFO algorithm is presented to measure its performance compared to other algorithms. The main focus of this literature is to present a survey and review the MFO and its applications. Also, the concluding remark section discusses some possible future research directions of the MFO algorithm and its variants.

4.
J Bionic Eng ; 19(4): 1140-1160, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35729974

RESUMEN

Because of their superior problem-solving ability, nature-inspired optimization algorithms are being regularly used in solving complex real-world optimization problems. Engineering academics have recently focused on meta-heuristic algorithms to solve various optimization challenges. Among the state-of-the-art algorithms, Differential Evolution (DE) is one of the most successful algorithms and is frequently used to solve various industrial problems. Over the previous 2 decades, DE has been heavily modified to improve its capabilities. Several DE variations secured positions in IEEE CEC competitions, establishing their efficacy. However, to our knowledge, there has never been a comparison of performance across various CEC-winning DE versions, which could aid in determining which is the most successful. In this study, the performance of DE and its eight other IEEE CEC competition-winning variants are compared. First, the algorithms have evaluated IEEE CEC 2019 and 2020 bound-constrained functions, and the performances have been compared. One unconstrained problem from IEEE CEC 2011 problem suite and five other constrained mechanical engineering design problems, out of which four issues have been taken from IEEE CEC 2020 non-convex constrained optimization suite, have been solved to compare the performances. Statistical analyses like Friedman's test and Wilcoxon's test are executed to verify the algorithm's ability statistically. Performance analysis exposes that none of the DE variants can solve all the problems efficiently. Performance of SHADE and ELSHADE-SPACMA are considerable among the methods used for comparison to solve such mechanical design problems.

5.
Sci Rep ; 12(1): 6166, 2022 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-35418566

RESUMEN

Deep learning (DL) models are becoming pervasive and applicable to computer vision, image processing, and synthesis problems. The performance of these models is often improved through architectural configuration, tweaks, the use of enormous training data, and skillful selection of hyperparameters. The application of deep learning models to medical image processing has yielded interesting performance, capable of correctly detecting abnormalities in medical digital images, making them surpass human physicians. However, advancing research in this domain largely relies on the availability of training datasets. These datasets are sometimes not publicly accessible, insufficient for training, and may also be characterized by a class imbalance among samples. As a result, inadequate training samples and difficulty in accessing new datasets for training deep learning models limit performance and research into new domains. Hence, generative adversarial networks (GANs) have been proposed to mediate this gap by synthesizing data similar to real sample images. However, we observed that benchmark datasets with regions of interest (ROIs) for characterizing abnormalities in breast cancer using digital mammography do not contain sufficient data with a fair distribution of all cases of abnormalities. For instance, the architectural distortion and breast asymmetry in digital mammograms are sparsely distributed across most publicly available datasets. This paper proposes a GAN model, named ROImammoGAN, which synthesizes ROI-based digital mammograms. Our approach involves the design of a GAN model consisting of both a generator and a discriminator to learn a hierarchy of representations for abnormalities in digital mammograms. Attention is given to architectural distortion, asymmetry, mass, and microcalcification abnormalities so that training distinctively learns the features of each abnormality and generates sufficient images for each category. The proposed GAN model was applied to MIAS datasets, and the performance evaluation yielded a competitive accuracy for the synthesized samples. In addition, the quality of the images generated was also evaluated using PSNR, SSIM, FSIM, BRISQUE, PQUE, NIQUE, FID, and geometry scores. The results showed that ROImammoGAN performed competitively with state-of-the-art GANs. The outcome of this study is a model for augmenting CNN models with ROI-centric image samples for the characterization of abnormalities in breast images.


Asunto(s)
Neoplasias de la Mama , Redes Neurales de la Computación , Benchmarking , Neoplasias de la Mama/diagnóstico por imagen , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Mamografía
6.
Cognit Comput ; 14(2): 900-925, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35126764

RESUMEN

Backtracking search algorithm (BSA) is a nature-based optimization technique extensively used to solve various real-world global optimization problems for the past few years. The present work aims to introduce an improved BSA (ImBSA) based on a multi-population approach and modified control parameter settings to apprehend an ensemble of various mutation strategies. In the proposed ImBSA, a new mutation strategy is suggested to enhance the algorithm's performance. Also, for all mutation strategies, the control parameters are updated adaptively during the algorithm's execution. Extensive experiments have been performed on CEC2014 and CEC2017 single-objective benchmark functions, and the results are compared with several state-of-the-art algorithms, improved BSA variants, efficient differential evolution (DE) variants, particle swarm optimization (PSO) variants, and some other hybrid variants. The nonparametric Friedman rank test has been conducted to examine the efficiency of the proposed algorithm statistically. Moreover, six real-world engineering design problems have been solved to examine the problem-solving ability of ImBSA. The experimental results, statistical analysis, convergence graphs, complexity analysis, and the results of real-world applications confirm the superior performance of the suggested ImBSA.

7.
J Ambient Intell Humaniz Comput ; 13(12): 5505-5546, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33868507

RESUMEN

Symbiotic Organisms Search (SOS) algorithm is characterized based on the framework of relationships among the ecosystem species. Nevertheless, it is suffering from wasteful discovery, little productivity, and slack convergence rate. These deficiencies cause stagnation at the local optimum, which is hazardous in deciding the genuine optima of the optimization problem. Backtracking Search Algorithm (BSA) is likewise another streamlining method for comprehending the non-direct complex optimization problem. Consequently, in the current paper, an endeavor has been made toward the expulsion of the downsides from the traditional SOS by proposing a novel ensemble technique called e-SOSBSA to overhaul the degree of intensification and diversification. In e-SOSBSA, firstly, the mutation operator of BSA with the self-adaptive mutation rate is incorporated to produce a mutant of population and leap out from the local optima. Secondly, the crossover operator of BSA with the adaptive component of mixrate is incorporated to leverage the entire active search regions visited previously. The suggested e-SOSBSA has been tested with 20 classical benchmark functions, IEEE CEC2014, CEC2015, CEC2017, and the latest CEC 2020 test functions. Statistical analyses, convergence analysis, and diversity analysis are performed to show the stronger search capabilities of the proposed e-SOSBSA in contrast with the component algorithms and several state-of-the-art algorithms. Moreover, the proposed e-SOSBSA is applied to find the optimum value of the seven problems of engineering optimization. The numerical investigations and examinations show that the proposed e-SOSBSA can be profoundly viable in tackling real-world engineering optimization problems.

8.
Risk Anal ; 42(1): 85-96, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34424559

RESUMEN

The preparedness of Indian states and union territories (UTs) against the COVID-19 pandemic has been evaluated. Ten parameters related to demographic, socioeconomic, and healthcare aspects have been considered and the performances of 27 states and three UTs have been evaluated applying the Fuzzy Analytic Hierarchy Process. Opinions of medical experts have been considered to ascertain the relative importance of decision criteria as well as subcriteria. The scores of various states and UTs in each of the decision subcriteria have been calculated by using the secondary data collected from authentic sources. It is found that Kerala and Bihar are the best prepared and worst prepared states, respectively, to combat COVID-19 pandemic. Karnataka, Goa, and Tamil Nadu have very good preparedness whereas Chhattisgarh, Jharkhand, and Bihar have very poor preparedness. Maharashtra, the most affected state in India, has average preparedness. As around 650 million people are vulnerable due to the poor and very poor preparedness of their states, the country needs to make region specific mitigation strategies to combat the COVID-19 pandemic and the preparedness map will be helpful in that direction.


Asunto(s)
COVID-19/epidemiología , Toma de Decisiones , Pandemias/prevención & control , Medición de Riesgo/métodos , SARS-CoV-2 , Humanos , India/epidemiología
9.
Comput Biol Med ; 139: 104984, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34739972

RESUMEN

Coronavirus disease 2019 (COVID-19) has caused a massive disaster in every human life field, including health, education, economics, and tourism, over the last year and a half. Rapid interpretation of COVID-19 patients' X-ray images is critical for diagnosis and, consequently, treatment of the disease. The major goal of this research is to develop a computational tool that can quickly and accurately determine the severity of an illness using COVID-19 chest X-ray pictures and improve the degree of diagnosis using a modified whale optimization method (WOA). To improve the WOA, a random initialization of the population is integrated during the global search phase. The parameters, coefficient vector (A) and constant value (b), are changed so that the algorithm can explore in the early stages while also exploiting the search space extensively in the latter stages. The efficiency of the proposed modified whale optimization algorithm with population reduction (mWOAPR) method is assessed by using it to segment six benchmark images using multilevel thresholding approach and Kapur's entropy-based fitness function calculated from the 2D histogram of greyscale images. By gathering three distinct COVID-19 chest X-ray images, the projected algorithm (mWOAPR) is utilized to segment the COVID-19 chest X-ray images. In both benchmark pictures and COVID-19 chest X-ray images, comparisons of the evaluated findings with basic and modified forms of metaheuristic algorithms supported the suggested mWOAPR's improved performance.


Asunto(s)
COVID-19 , Algoritmos , Animales , Humanos , Procesamiento de Imagen Asistido por Computador , SARS-CoV-2 , Rayos X
10.
Recent Pat Biotechnol ; 13(1): 74-86, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30124162

RESUMEN

BACKGROUND: The non-Newtonian pseudoplastic liquid flow through different types of the bend is more complicated compared to the simple straight pipe as the bends are associated with various curve geometry. Bends have wide application in bioengineering, biotechnology and biomedical such as study biofluids, blood rheology study, the design of medical equipment like equipment measuring the cholesterol etc. Method: The papers deal with the estimation of loss coefficient and frictional pressure drop of Newtonian and non-Newtonian pseudoplastic fluid flow through the different bend of 0.0127 m diameter pipe geometry using commercially available CFD software fluent 6.3. We revised all patents relating to the pipe flow through different types of bend. The present study also deals with the efficient application of Genetic Algorithm (GA) for optimization of frictional pressure drop. Laminar Non-Newtonian Power law model is used for Sodium Carboxy Methyl Cellulose (SCMC) solution to solve the continuity and the momentum equations numerically. Generalized input-output correlation has been developed by Gene Expression Programming (GEP) using Matlab. RESULTS: The above-mentioned algorithm is used to predict and optimize the pressure drop. It has been found that, the process exhibit the minimum pressure drop across the bend under optimum condition (Angle = 133.160, Concentration = 0.2 Kg/m3 and velocity = 0.53 m/s). The effect of flow rate, bend angle, fluid behaviour on static pressure and pressure drop has also been investigated. CONCLUSION: From the study, it can be concluded that the developed GA model has a good agreement with the CFD model. The software predicted data might be used to solve various industrial problems and also to design different equipment.


Asunto(s)
Carboximetilcelulosa de Sodio/química , Hidrodinámica , Patentes como Asunto , Humanos , Presión , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...