Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Cell Biol ; 26(4): 593-603, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38553595

RESUMEN

Loss of protein function is a driving force of ageing. We have identified peptidyl-prolyl isomerase A (PPIA or cyclophilin A) as a dominant chaperone in haematopoietic stem and progenitor cells. Depletion of PPIA accelerates stem cell ageing. We found that proteins with intrinsically disordered regions (IDRs) are frequent PPIA substrates. IDRs facilitate interactions with other proteins or nucleic acids and can trigger liquid-liquid phase separation. Over 20% of PPIA substrates are involved in the formation of supramolecular membrane-less organelles. PPIA affects regulators of stress granules (PABPC1), P-bodies (DDX6) and nucleoli (NPM1) to promote phase separation and increase cellular stress resistance. Haematopoietic stem cell ageing is associated with a post-transcriptional decrease in PPIA expression and reduced translation of IDR-rich proteins. Here we link the chaperone PPIA to the synthesis of intrinsically disordered proteins, which indicates that impaired protein interaction networks and macromolecular condensation may be potential determinants of haematopoietic stem cell ageing.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , Proteínas Intrínsecamente Desordenadas/química , Ciclofilina A/genética , Ciclofilina A/metabolismo , Proteínas de Unión al ARN , Células Madre Hematopoyéticas/metabolismo
2.
Cancers (Basel) ; 14(3)2022 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-35159073

RESUMEN

The ubiquitin-proteasome pathway precisely controls the turnover of transcription factors in the nucleus, playing an important role in maintaining appropriate quantities of these regulatory proteins. The transcription factor c-MYC is essential for normal development and is a critical cancer driver. Despite being highly expressed in several tissues and malignancies, the c-MYC protein is also continuously targeted by the ubiquitin-proteasome pathway, which can either facilitate or inhibit c-MYC degradation. Deubiquitinating proteases can remove ubiquitin chains from target proteins and rescue them from proteasomal digestion. This study sought to determine novel elements of the ubiquitin-proteasome pathway that regulate c-MYC levels. We performed an overexpression screen with 41 human proteases to identify which deubiquitinases stabilize c-MYC. We discovered that the highly expressed Otubain-1 (OTUB1) protease increases c-MYC protein levels. Confirming its role in enhancing c-MYC activity, we found that elevated OTUB1 correlates with inferior clinical outcomes in the c-MYC-dependent cancer multiple myeloma, and overexpression of OTUB1 accelerates the growth of myeloma cells. In summary, our study identifies OTUB1 as a novel amplifier of the proto-oncogene c-MYC.

3.
Cancer Res Commun ; 2(12): 1693-1710, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36846090

RESUMEN

Proteasome inhibitors have become the standard of care for multiple myeloma (MM). Blocking protein degradation particularly perturbs the homeostasis of short-lived polypeptides such as transcription factors and epigenetic regulators. To determine how proteasome inhibitors directly impact gene regulation, we performed an integrative genomics study in MM cells. We discovered that proteasome inhibitors reduce the turnover of DNA-associated proteins and repress genes necessary for proliferation through epigenetic silencing. Specifically, proteasome inhibition results in the localized accumulation of histone deacetylase 3 (HDAC3) at defined genomic sites, which reduces H3K27 acetylation and increases chromatin condensation. The loss of active chromatin at super-enhancers critical for MM, including the super-enhancer controlling the proto-oncogene c-MYC, reduces metabolic activity and cancer cell growth. Epigenetic silencing is attenuated by HDAC3 depletion, suggesting a tumor-suppressive element of this deacetylase in the context of proteasome inhibition. In the absence of treatment, HDAC3 is continuously removed from DNA by the ubiquitin ligase SIAH2. Overexpression of SIAH2 increases H3K27 acetylation at c-MYC-controlled genes, increases metabolic output, and accelerates cancer cell proliferation. Our studies indicate a novel therapeutic function of proteasome inhibitors in MM by reshaping the epigenetic landscape in an HDAC3-dependent manner. As a result, blocking the proteasome effectively antagonizes c-MYC and the genes controlled by this proto-oncogene.


Asunto(s)
Cromatina , Mieloma Múltiple , Humanos , Inhibidores de Proteasoma/farmacología , Complejo de la Endopetidasa Proteasomal/metabolismo , Mieloma Múltiple/tratamiento farmacológico , Genes myc
4.
Nat Commun ; 12(1): 6850, 2021 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-34824242

RESUMEN

The molecular mechanisms that drive hematopoietic stem cell functional decline under conditions of telomere shortening are not completely understood. In light of recent advances in single-cell technologies, we sought to redefine the transcriptional and epigenetic landscape of mouse and human hematopoietic stem cells under telomere attrition, as induced by pathogenic germline variants in telomerase complex genes. Here, we show that telomere attrition maintains hematopoietic stem cells under persistent metabolic activation and differentiation towards the megakaryocytic lineage through the cell-intrinsic upregulation of the innate immune signaling response, which directly compromises hematopoietic stem cells' self-renewal capabilities and eventually leads to their exhaustion. Mechanistically, we demonstrate that targeting members of the Ifi20x/IFI16 family of cytosolic DNA sensors using the oligodeoxynucleotide A151, which comprises four repeats of the TTAGGG motif of the telomeric DNA, overcomes interferon signaling activation in telomere-dysfunctional hematopoietic stem cells and these cells' skewed differentiation towards the megakaryocytic lineage. This study challenges the historical hypothesis that telomere attrition limits the proliferative potential of hematopoietic stem cells by inducing apoptosis, autophagy, or senescence, and suggests that targeting IFI16 signaling axis might prevent hematopoietic stem cell functional decline in conditions affecting telomere maintenance.


Asunto(s)
Hematopoyesis/fisiología , Acortamiento del Telómero/fisiología , Animales , Trastornos de Fallo de la Médula Ósea/genética , Trastornos de Fallo de la Médula Ósea/metabolismo , Trastornos de Fallo de la Médula Ósea/patología , Autorrenovación de las Células , Reprogramación Celular , Hematopoyesis/genética , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Humanos , Interferones/metabolismo , Megacariocitos/citología , Megacariocitos/metabolismo , Ratones , Proteínas Nucleares/metabolismo , Oligodesoxirribonucleótidos/metabolismo , Fosfoproteínas/metabolismo , Transducción de Señal , Análisis de la Célula Individual , Telómero/química , Telómero/fisiología , Acortamiento del Telómero/genética
5.
PLoS One ; 16(9): e0254557, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34473704

RESUMEN

The interaction of extracellular matrix (ECM) components with hepatic stellate cells (HSCs) is thought to perpetuate fibrosis by stimulating signaling pathways that drive HSC activation, survival and proliferation. Consequently, disrupting the interaction between ECM and HSCs is considered a therapeutical avenue although respective targets and underlying mechanisms remain to be established. Here we have interrogated the interaction between type VI collagen (CVI) and HSCs based on the observation that CVI is 10-fold upregulated during fibrosis, closely associates with HSCs in vivo and promotes cell proliferation and cell survival in cancer cell lines. We exposed primary rat HSCs and a rat hepatic stellate cell line (CFSC) to soluble CVI and determined the rate of proliferation, apoptosis and fibrogenesis in the absence of any additional growth factors. We find that CVI in nanomolar concentrations prevents serum starvation-induced apoptosis. This potent anti-apoptotic effect is accompanied by induction of proliferation and acquisition of a pronounced pro-fibrogenic phenotype characterized by increased α-smooth muscle actin, TGF-ß, collagen type I and TIMP-1 expression and diminished proteolytic MMP-13 expression. The CVI-HSC interaction can be disrupted with the monomeric α2(VI) and α3(VI) chains and abrogates the activating CVI effects. Further, functional relevant α3(VI)-derived 30 amino acid peptides lead to near-complete inhibition of the CVI effect. In conclusion, CVI serves as a potent mitogen and activating factor for HSCs. The antagonistic effects of the CVI monomeric chains and peptides point to linear peptide sequences that prevent activation of CVI receptors which may allow a targeted antifibrotic therapy.


Asunto(s)
Colágeno Tipo VI/metabolismo , Fibrosis/tratamiento farmacológico , Células Estrelladas Hepáticas/metabolismo , Cirrosis Hepática/tratamiento farmacológico , Péptidos/farmacología , Subunidades de Proteína/farmacología , Factor de Crecimiento Transformador beta1/metabolismo , Animales , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Fibrosis/metabolismo , Fibrosis/patología , Células Estrelladas Hepáticas/patología , Humanos , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Ratas , Transducción de Señal
6.
Metabolites ; 11(6)2021 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-34204343

RESUMEN

Studies in humans and model systems have established an important role of short telomeres in predisposing to liver fibrosis through pathways that are incompletely understood. Recent studies have shown that telomere dysfunction impairs cellular metabolism, but whether and how these metabolic alterations contribute to liver fibrosis is not well understood. Here, we investigated whether short telomeres change the hepatic response to metabolic stress induced by fructose, a sugar that is highly implicated in non-alcoholic fatty liver disease. We find that telomere shortening in telomerase knockout mice (TKO) imparts a pronounced susceptibility to fructose as reflected in the activation of p53, increased apoptosis, and senescence, despite lower hepatic fat accumulation in TKO mice compared to wild type mice with long telomeres. The decreased fat accumulation in TKO is mediated by p53 and deletion of p53 normalizes hepatic fat content but also causes polyploidy, polynuclearization, dysplasia, cell death, and liver damage. Together, these studies suggest that liver tissue with short telomers are highly susceptible to fructose and respond with p53 activation and liver damage that is further exacerbated when p53 is lost resulting in dysplastic changes.

7.
Cancers (Basel) ; 13(4)2021 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-33671345

RESUMEN

Multiple myeloma and its precursor plasma cell dyscrasias affect 3% of the elderly population in the US. Proteasome inhibitors are an essential part of several standard drug combinations used to treat this incurable cancer. These drugs interfere with the main pathway of protein degradation and lead to the accumulation of damaged proteins inside cells. Despite promising initial responses, multiple myeloma cells eventually become drug resistant in most patients. The biology behind relapsed/refractory multiple myeloma is complex and poorly understood. Several studies provide evidence that in addition to the proteasome, mitochondrial proteases can also contribute to protein quality control outside of mitochondria. We therefore hypothesized that mitochondrial proteases might counterbalance protein degradation in cancer cells treated with proteasome inhibitors. Using clinical and experimental data, we found that overexpression of the mitochondrial matrix protease LonP1 (Lon Peptidase 1) reduces the efficacy of proteasome inhibitors. Some proteasome inhibitors partially crossinhibit LonP1. However, we show that the resistance effect of LonP1 also occurs when using drugs that do not block this protease, suggesting that LonP1 can compensate for loss of proteasome activity. These results indicate that targeting both the proteasome and mitochondrial proteases such as LonP1 could be beneficial for treatment of multiple myeloma.

8.
Sci Rep ; 10(1): 13942, 2020 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-32811853

RESUMEN

Transcription is regulated through a dynamic interplay of DNA-associated proteins, and the composition of gene-regulatory complexes is subject to continuous adjustments. Protein alterations include post-translational modifications and elimination of individual polypeptides. Spatially and temporally controlled protein removal is, therefore, essential for gene regulation and accounts for the short half-life of many transcription factors. The ubiquitin-proteasome system is responsible for site- and target-specific ubiquitination and protein degradation. Specificity of ubiquitination is conferred by ubiquitin ligases. Cullin-RING complexes, the largest family of ligases, require multi-unit assembly around one of seven cullin proteins. To investigate the direct role of cullins in ubiquitination of DNA-bound proteins and in gene regulation, we analyzed their subcellular locations and DNA-affinities. We found CUL4A and CUL7 to be largely excluded from the nucleus, whereas CUL4B was primarily nuclear. CUL1,2,3, and 5 showed mixed cytosolic and nuclear expression. When analyzing chromatin affinity of individual cullins, we discovered that CUL1 preferentially associated with active promoter sequences and co-localized with 23% of all DNA-associated protein degradation sites. CUL1 co-distributed with c-MYC and specifically repressed nuclear-encoded mitochondrial and splicing-associated genes. These studies underscore the relevance of spatial control in chromatin-associated protein ubiquitination and define a novel role for CUL1 in gene repression.


Asunto(s)
Cromatina/metabolismo , Proteínas Cullin/genética , Proteínas Cullin/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Núcleo Celular/metabolismo , Proteínas de Unión al ADN , Genes myc , Células HeLa , Humanos , Unión Proteica , Procesamiento Proteico-Postraduccional , Proteolisis , Factores de Transcripción/metabolismo , Transcripción Genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
9.
Mol Cell Oncol ; 6(5): e1632613, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31528700

RESUMEN

Telomeres and sirtuins are independently implicated in causing disease and aging, but how they cooperate is not well understood. A recent study demonstrates that telomere shortening represses sirtuins and increasing sirtuin activity stabilizes telomeres and improves telomere-dependent disease, suggesting that these two pathways are tightly intertwined.

10.
Cell Metab ; 29(6): 1274-1290.e9, 2019 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-30930169

RESUMEN

Telomere shortening is associated with stem cell decline, fibrotic disorders, and premature aging through mechanisms that are incompletely understood. Here, we show that telomere shortening in livers of telomerase knockout mice leads to a p53-dependent repression of all seven sirtuins. P53 regulates non-mitochondrial sirtuins (Sirt1, 2, 6, and 7) post-transcriptionally through microRNAs (miR-34a, 26a, and 145), while the mitochondrial sirtuins (Sirt3, 4, and 5) are regulated in a peroxisome proliferator-activated receptor gamma co-activator 1 alpha-/beta-dependent manner at the transcriptional level. Administration of the NAD(+) precursor nicotinamide mononucleotide maintains telomere length, dampens the DNA damage response and p53, improves mitochondrial function, and, functionally, rescues liver fibrosis in a partially Sirt1-dependent manner. These studies establish sirtuins as downstream targets of dysfunctional telomeres and suggest that increasing Sirt1 activity alone or in combination with other sirtuins stabilizes telomeres and mitigates telomere-dependent disorders.


Asunto(s)
Cirrosis Hepática/genética , Sirtuinas/genética , Acortamiento del Telómero/fisiología , Animales , Células Cultivadas , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Embrión de Mamíferos , Femenino , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Células HEK293 , Humanos , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Cirrosis Hepática/patología , Cirrosis Hepática/prevención & control , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias Hepáticas/efectos de los fármacos , Mitocondrias Hepáticas/metabolismo , Mononucleótido de Nicotinamida/farmacología , Sirtuina 1/genética , Sirtuina 1/metabolismo , Sirtuinas/metabolismo , Telomerasa/genética , Telomerasa/metabolismo , Homeostasis del Telómero/efectos de los fármacos , Homeostasis del Telómero/fisiología , Acortamiento del Telómero/efectos de los fármacos , Acortamiento del Telómero/genética
11.
Proc Natl Acad Sci U S A ; 115(51): E11978-E11987, 2018 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-30498031

RESUMEN

A Clinical Proteomic Tumor Analysis Consortium (CPTAC) proteogenomic analysis prioritized dihydropyrimidinase-like-3 (DPYSL3) as a multilevel (RNA/protein/phosphoprotein) expression outlier specific to the claudin-low (CLOW) subset of triple-negative breast cancers. A PubMed informatics tool indicated a paucity of data in the context of breast cancer, which further prioritized DPYSL3 for study. DPYSL3 knockdown in DPYSL3-positive ([Formula: see text]) CLOW cell lines demonstrated reduced proliferation, yet enhanced motility and increased expression of epithelial-to-mesenchymal transition (EMT) markers, suggesting that DPYSL3 is a multifunctional signaling modulator. Slower proliferation in DPYSL3-negative ([Formula: see text]) CLOW cells was associated with accumulation of multinucleated cells, indicating a mitotic defect that was associated with a collapse of the vimentin microfilament network and increased vimentin phosphorylation. DPYSL3 also suppressed the expression of EMT regulators SNAIL and TWIST and opposed p21 activated kinase 2 (PAK2)-dependent migration. However, these EMT regulators in turn induce DPYSL3 expression, suggesting that DPYSL3 participates in negative feedback on EMT. In conclusion, DPYSL3 expression identifies CLOW tumors that will be sensitive to approaches that promote vimentin phosphorylation during mitosis and inhibitors of PAK signaling during migration and EMT.


Asunto(s)
Neoplasias de la Mama/metabolismo , Movimiento Celular/fisiología , Claudinas/metabolismo , Transición Epitelial-Mesenquimal/fisiología , Regulación Neoplásica de la Expresión Génica , Mitosis/fisiología , Proteínas Musculares/metabolismo , Animales , Neoplasias de la Mama/genética , Línea Celular Tumoral , Proliferación Celular , Transición Epitelial-Mesenquimal/genética , Retroalimentación Fisiológica , Femenino , Técnicas de Silenciamiento del Gen , Xenoinjertos , Humanos , Masculino , Ratones , Ratones Desnudos , Proteínas Musculares/genética , Proteínas Nucleares/metabolismo , Fosforilación , Proteogenómica , Proteómica , Proteínas Represoras/metabolismo , Transducción de Señal , Factores de Transcripción de la Familia Snail/metabolismo , Neoplasias de la Mama Triple Negativas/metabolismo , Proteína 1 Relacionada con Twist/metabolismo , Vimentina/metabolismo , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc/metabolismo , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismo , Quinasas p21 Activadas/metabolismo
12.
Nat Commun ; 8: 14659, 2017 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-28337975

RESUMEN

Mutations in the RYR1 gene cause severe myopathies. Mice with an I4895T mutation in the type 1 ryanodine receptor/Ca2+ release channel (RyR1) display muscle weakness and atrophy, but the underlying mechanisms are unclear. Here we show that the I4895T mutation in RyR1 decreases the amplitude of the sarcoplasmic reticulum (SR) Ca2+ transient, resting cytosolic Ca2+ levels, muscle triadin content and calsequestrin (CSQ) localization to the junctional SR, and increases endoplasmic reticulum (ER) stress/unfolded protein response (UPR) and mitochondrial ROS production. Treatment of mice carrying the I4895T mutation with a chemical chaperone, sodium 4-phenylbutyrate (4PBA), reduces ER stress/UPR and improves muscle function, but does not restore SR Ca2+ transients in I4895T fibres to wild type levels, suggesting that decreased SR Ca2+ release is not the major driver of the myopathy. These findings suggest that 4PBA, an FDA-approved drug, has potential as a therapeutic intervention for RyR1 myopathies that are associated with ER stress.


Asunto(s)
Músculo Esquelético/fisiopatología , Mutación/genética , Fenilbutiratos/farmacología , Canal Liberador de Calcio Receptor de Rianodina/genética , Animales , Apoptosis/efectos de los fármacos , Calcio/metabolismo , Señalización del Calcio/efectos de los fármacos , Calsecuestrina/metabolismo , Proteínas Portadoras/metabolismo , Estrés del Retículo Endoplásmico/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Ratones Mutantes , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Fenotipo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos
14.
Cell Rep ; 3(6): 1757-8, 2013 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-23809762

RESUMEN

Telomere dysfunction has previously been linked to metabolic disorders. In this issue of Cell Reports, Martínez et al. (2013) and Yeung et al. (2013) now extend this link, demonstrating that deletion of the telomere binding protein RAP1 leads to obesity and insulin resistance.


Asunto(s)
Peso Corporal/genética , Obesidad/genética , Proteínas de Unión a Telómeros/genética , Telómero/metabolismo , Proteínas de Unión al GTP rap1/metabolismo , Animales , Femenino , Humanos , Masculino
15.
Nature ; 488(7411): 337-42, 2012 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-22895339

RESUMEN

Inactivation of tumour-suppressor genes by homozygous deletion is a prototypic event in the cancer genome, yet such deletions often encompass neighbouring genes. We propose that homozygous deletions in such passenger genes can expose cancer-specific therapeutic vulnerabilities when the collaterally deleted gene is a member of a functionally redundant family of genes carrying out an essential function. The glycolytic gene enolase 1 (ENO1) in the 1p36 locus is deleted in glioblastoma (GBM), which is tolerated by the expression of ENO2. Here we show that short-hairpin-RNA-mediated silencing of ENO2 selectively inhibits growth, survival and the tumorigenic potential of ENO1-deleted GBM cells, and that the enolase inhibitor phosphonoacetohydroxamate is selectively toxic to ENO1-deleted GBM cells relative to ENO1-intact GBM cells or normal astrocytes. The principle of collateral vulnerability should be applicable to other passenger-deleted genes encoding functionally redundant essential activities and provide an effective treatment strategy for cancers containing such genomic events.


Asunto(s)
Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Genes Esenciales/genética , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Terapia Molecular Dirigida/métodos , Eliminación de Secuencia/genética , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Biomarcadores de Tumor/deficiencia , Biomarcadores de Tumor/genética , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Proliferación Celular , Cromosomas Humanos Par 1/genética , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Inhibidores Enzimáticos , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Genes Supresores de Tumor , Glioblastoma/patología , Homocigoto , Humanos , Ácidos Hidroxámicos/farmacología , Ácidos Hidroxámicos/uso terapéutico , Ratones , Trasplante de Neoplasias , Ácido Fosfonoacético/análogos & derivados , Ácido Fosfonoacético/farmacología , Ácido Fosfonoacético/uso terapéutico , Fosfopiruvato Hidratasa/antagonistas & inhibidores , Fosfopiruvato Hidratasa/deficiencia , Fosfopiruvato Hidratasa/genética , Fosfopiruvato Hidratasa/metabolismo , ARN Interferente Pequeño/genética , Proteínas Supresoras de Tumor/deficiencia , Proteínas Supresoras de Tumor/genética
16.
Nat Rev Mol Cell Biol ; 13(6): 397-404, 2012 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-22588366

RESUMEN

Progressive DNA damage and mitochondrial decline are both considered to be prime instigators of natural ageing. Traditionally, these two pathways have been viewed largely in isolation. However, recent studies have revealed a molecular circuit that directly links DNA damage to compromised mitochondrial biogenesis and function via p53. This axis of ageing may account for both organ decline and disease development associated with advanced age and could illuminate a path for the development of relevant therapeutics.


Asunto(s)
Envejecimiento/fisiología , Redes y Vías Metabólicas , Mitocondrias/metabolismo , Telómero/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Humanos , Modelos Biológicos
17.
Circ Res ; 110(9): 1226-37, 2012 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-22539756

RESUMEN

Studies in humans and in mice have highlighted the importance of short telomeres and impaired mitochondrial function in driving age-related functional decline in the heart. Although telomere and mitochondrial dysfunction have been viewed mainly in isolation, recent studies in telomerase-deficient mice have provided evidence for an intimate link between these two processes. Telomere dysfunction induces a profound p53-dependent repression of the master regulators of mitochondrial biogenesis and function, peroxisome proliferator-activated receptor gamma coactivator (PGC)-1α and PGC-1ß in the heart, which leads to bioenergetic compromise due to impaired oxidative phosphorylation and ATP generation. This telomere-p53-PGC mitochondrial/metabolic axis integrates many factors linked to heart aging including increased DNA damage, p53 activation, mitochondrial, and metabolic dysfunction and provides a molecular basis of how dysfunctional telomeres can compromise cardiomyocytes and stem cell compartments in the heart to precipitate cardiac aging.


Asunto(s)
Envejecimiento/genética , Enfermedades Cardiovasculares/genética , Mitocondrias Cardíacas/metabolismo , Acortamiento del Telómero , Telómero/metabolismo , Factores de Edad , Envejecimiento/patología , Animales , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/patología , Proteínas Portadoras/metabolismo , Metabolismo Energético , Proteínas de Choque Térmico/metabolismo , Humanos , Mitocondrias Cardíacas/patología , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Proteínas de Unión al ARN , Transducción de Señal , Telomerasa/metabolismo , Telómero/ultraestructura , Factores de Transcripción/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
18.
Cell ; 148(4): 651-63, 2012 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-22341440

RESUMEN

To assess telomerase as a cancer therapeutic target and determine adaptive mechanisms to telomerase inhibition, we modeled telomerase reactivation and subsequent extinction in T cell lymphomas arising in Atm(-/-) mice engineered with an inducible telomerase reverse transcriptase allele. Telomerase reactivation in the setting of telomere dysfunction enabled full malignant progression with alleviation of telomere dysfunction-induced checkpoints. These cancers possessed copy number alterations targeting key loci in human T cell lymphomagenesis. Upon telomerase extinction, tumor growth eventually slowed with reinstatement of telomere dysfunction-induced checkpoints, yet growth subsequently resumed as tumors acquired alternative lengthening of telomeres (ALT) and aberrant transcriptional networks centering on mitochondrial biology and oxidative defense. ALT+ tumors acquired amplification/overexpression of PGC-1ß, a master regulator of mitochondrial biogenesis and function, and they showed marked sensitivity to PGC-1ß or SOD2 knockdown. Genetic modeling of telomerase extinction reveals vulnerabilities that motivate coincidental inhibition of mitochondrial maintenance and oxidative defense mechanisms to enhance antitelomerase cancer therapy.


Asunto(s)
Mitocondrias , Telomerasa/antagonistas & inhibidores , Homeostasis del Telómero , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Proteínas de Ciclo Celular/genética , Proteínas de Unión al ADN/genética , Técnicas de Silenciamiento del Gen , Genes cdc , Humanos , Linfoma de Células T/genética , Linfoma de Células T/metabolismo , Linfoma de Células T/patología , Ratones , Mitocondrias/metabolismo , Invasividad Neoplásica/patología , Neoplasias/genética , Neoplasias/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Especies Reactivas de Oxígeno/metabolismo , Receptores de Estrógenos/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Telomerasa/genética , Telomerasa/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/genética
19.
Circulation ; 124(7): 806-13, 2011 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-21788586

RESUMEN

BACKGROUND: Oxidative stress and mitochondrial dysfunction are central mediators of cardiac dysfunction after ischemia/reperfusion. ATP binding cassette mitochondrial erythroid (ABC-me; ABCB10; mABC2) is a mitochondrial transporter highly induced during erythroid differentiation and predominantly expressed in bone marrow, liver, and heart. Until now, ABC-me function in heart was unknown. Several lines of evidence demonstrate that the yeast ortholog of ABC-me protects against increased oxidative stress. Therefore, ABC-me is a potential modulator of the outcome of ischemia/reperfusion in the heart. METHODS AND RESULTS: Mice harboring 1 functional allele of ABC-me (ABC-me(+/-)) were generated by replacing ABC-me exons 2 and 3 with a neomycin resistance cassette. Cardiac function was assessed with Langendorff perfusion and echocardiography. Under basal conditions, ABC-me(+/-) mice had normal heart structure, hemodynamic function, mitochondrial respiration, and oxidative status. However, after ischemia/reperfusion, the recovery of hemodynamic function was reduced by 50% in ABC-me(+/-) hearts as a result of impairments in both systolic and diastolic function. This reduction was associated with impaired mitochondrial bioenergetic function and with oxidative damage to both mitochondrial lipids and sarcoplasmic reticulum calcium ATPase after reperfusion. Treatment of ABC-me(+/-) hearts with the superoxide dismutase/catalase mimetic EUK-207 prevented oxidative damage to mitochondria and sarcoplasmic reticulum calcium ATPase and restored mitochondrial and cardiac function to wild-type levels after reperfusion. CONCLUSIONS: Inactivation of 1 allele of ABC-me increases the susceptibility to oxidative stress induced by ischemia/reperfusion, leading to increased oxidative damage to mitochondria and sarcoplasmic reticulum calcium ATPase and to impaired functional recovery. Thus, ABC-me is a novel gene that determines the ability to tolerate cardiac ischemia/reperfusion.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/genética , Mitocondrias/fisiología , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/metabolismo , Estrés Oxidativo/genética , Recuperación de la Función/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Animales , Volumen Cardíaco/fisiología , Catalasa/metabolismo , Femenino , Predisposición Genética a la Enfermedad/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Mitocondrias/efectos de los fármacos , Mutagénesis Insercional , Contracción Miocárdica/efectos de los fármacos , Contracción Miocárdica/fisiología , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Compuestos Organometálicos/farmacología , Estrés Oxidativo/efectos de los fármacos , Superóxido Dismutasa/metabolismo , Presión Ventricular/fisiología
20.
Genes Dev ; 25(7): 717-29, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21406549

RESUMEN

Macroautophagy (autophagy) is a regulated catabolic pathway to degrade cellular organelles and macromolecules. The role of autophagy in cancer is complex and may differ depending on tumor type or context. Here we show that pancreatic cancers have a distinct dependence on autophagy. Pancreatic cancer primary tumors and cell lines show elevated autophagy under basal conditions. Genetic or pharmacologic inhibition of autophagy leads to increased reactive oxygen species, elevated DNA damage, and a metabolic defect leading to decreased mitochondrial oxidative phosphorylation. Together, these ultimately result in significant growth suppression of pancreatic cancer cells in vitro. Most importantly, inhibition of autophagy by genetic means or chloroquine treatment leads to robust tumor regression and prolonged survival in pancreatic cancer xenografts and genetic mouse models. These results suggest that, unlike in other cancers where autophagy inhibition may synergize with chemotherapy or targeted agents by preventing the up-regulation of autophagy as a reactive survival mechanism, autophagy is actually required for tumorigenic growth of pancreatic cancers de novo, and drugs that inactivate this process may have a unique clinical utility in treating pancreatic cancers and other malignancies with a similar dependence on autophagy. As chloroquine and its derivatives are potent inhibitors of autophagy and have been used safely in human patients for decades for a variety of purposes, these results are immediately translatable to the treatment of pancreatic cancer patients, and provide a much needed, novel vantage point of attack.


Asunto(s)
Autofagia , Carcinoma Ductal Pancreático/patología , Neoplasias Pancreáticas/patología , Animales , Antineoplásicos/farmacología , Autofagia/efectos de los fármacos , Línea Celular Tumoral , Cloroquina/farmacología , Daño del ADN , Humanos , Ratones , Ratones Desnudos , Interferencia de ARN , Distribución Aleatoria , Especies Reactivas de Oxígeno/metabolismo , Trasplante Heterólogo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA