Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Med Chem Lett ; 14(10): 1472-1477, 2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37849561

RESUMEN

The conjugation of tetraphenylethylene (TPE) with podophyllotoxin, N-desacetylthiocolchicine, and cabazitaxel through a sebacic acid linker led to the formation of fluorescent nanoparticles. Dynamic light scattering (DLS) and photoluminescence spectroscopy were used for the identification and characterization of the fluorescent nanoparticles. The biological evaluation was determined in three human ovarian (KURAMOCHI, OVCAR3, OVSAHO) and three human breast (MCF7, SKBR 3, and MDA-MB231) cancer cell lines. In the case of cabazitaxel, the nanoparticles maintained the activity of the parent drug, at the low nanomolar range, while exhibiting high blue fluorescence. The internalization of the fluorescent NPs into cells was detected using immunofluorescence assay.

2.
Sci Rep ; 13(1): 6460, 2023 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-37081051

RESUMEN

Cancer is one of the leading causes of death worldwide, accounting for nearly 10 million deaths in 2020. Current treatment methods include hormone therapy, γ-radiation, immunotherapy, and chemotherapy. Although chemotherapy is the most effective treatment, there are major obstacles posed by resistance mechanisms of cancer cells and side-effects of the drugs, thus the search for novel anti-cancer compounds, especially from natural sources, is crucial for cancer pharmaceutics research. One natural source worthy of investigation is fungal species. In this study, the cytotoxicity of 5 metabolic compounds isolated from filamentous fungus Aspergillus Carneus. Arugosin C, Averufin, Averufanin, Nidurifin and Versicolorin C were analyzed using NCI-SRB assay on 10 different cell lines of breast cancer, ovarian cancer, glioblastoma and non-tumorigenic cell lines. Averufanin showed highest cytotoxicity with lowest IC50 concentrations especially on breast cancer cells. Therefore, Averufanin was further investigated to enlighten cell death and molecular mechanisms of action involved. Cell cycle analysis showed increase in SubG1 phase suggesting apoptosis induction which was further confirmed by Annexin V and Caspase 3/7 Assays. H2A.X staining revealed accumulation of DNA damage in cells treated with Averufanin and finally western blot analysis validated DNA damage response and downstream effects of Averufanin treatment in various signaling pathways. Consequently, this study shows that Averufanin compound induces cell cycle arrest and cell death via apoptosis through causing DNA damage and can be contemplated and further explored as a new therapeutic strategy in breast cancer.


Asunto(s)
Apoptosis , Neoplasias de la Mama , Humanos , Femenino , Puntos de Control del Ciclo Celular , Línea Celular , Neoplasias de la Mama/metabolismo , Daño del ADN , Línea Celular Tumoral , Ciclo Celular
3.
Anticancer Agents Med Chem ; 22(7): 1340-1347, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34165413

RESUMEN

BACKGROUND: Although transplantation, surgical resection, and tumor ablation are treatment options available following early diagnosis of HCC, poor prognosis and high recurrence rates restrict the efficacy of these approaches. Hence, small molecules with high selectivity and bioactivity are urgently required. OBJECTIVE: This study presents the synthesis of a series of new triazolothiadiazole derivatives (1a-3j) with NSAID moieties and their cytotoxic bioactivities. METHODS: The new synthetic derivatives (1-3; 1a-3j) and NSAIDs ibuprofen, naproxen, and flurbiprofen that commonly used in clinics were screened against human liver (Huh7), breast (MCF7), and colon (HCT116) carcinoma cell lines under in vitro conditions via NCI-sulforhodamine B assay. RESULTS: The 4-methoxyphenyl substituted condensed derivatives 1h, 2h, and 3h were the most active compounds. Based on its high potency, compound 3h was selected for the further biological evaluation of hepatocellular carcinoma cell lines, and the mechanisms underlying cell death induced by 3h were determined. The results revealed that compound 3h induced apoptosis and cell cycle arrest in the sub G1 phase in human liver cancer cells. CONCLUSION: These new small molecules may be used for the development of new lead compounds.


Asunto(s)
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Antiinflamatorios no Esteroideos/farmacología , Carcinoma Hepatocelular/tratamiento farmacológico , Línea Celular Tumoral , Proliferación Celular , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Estructura Molecular , Relación Estructura-Actividad
4.
Cancers (Basel) ; 13(2)2021 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-33445465

RESUMEN

Serous endometrial cancer (SEC) resembles high-grade serous ovarian cancer (HGSOC) genetically and clinically, with recurrent copy number alterations, TP53 mutations and a poor prognosis. Thus, SEC patients may benefit from targeted treatments used in HGSOC, e.g., PARP inhibitors. However, the preclinical and clinical knowledge about SEC is scarce, and the exact role of defective DNA repair in this tumor subgroup is largely unknown. We aimed to outline the prevalence of homologous recombination repair deficiency (HRD), copy-number alterations, and somatic mutations in SEC. OncoScan SNP arrays were applied to 19 tumors in a consecutive SEC series to calculate HRD scores and explore global copy-number profiles and genomic aberrations. Copy-number signatures were established and targeted sequencing of 27 HRD-associated genes was performed. All factors were examined in relation to HRD scores to investigate potential drivers of the HRD phenotype. Ten of the 19 SEC tumors (53%) had an HRD score > 42, considered to reflect an HRD phenotype. Higher HRD score was associated with loss of heterozygosity in key HRD genes, and copy-number signatures associated with non-BRCA1/2 dependent HRD in HGSOC. A high number of SECs display an HRD phenotype. It remains to be elucidated whether this also confers PARP inhibitor sensitivity.

5.
Sci Rep ; 10(1): 11814, 2020 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-32678233

RESUMEN

Hepatocellular carcinoma (HCC) ranks as the fifth most common and the second deadliest cancer worldwide. HCC is extremely resistant to the conventional chemotherapeutics. Hence, it is vital to develop new treatment options. Chalcones were previously shown to have anticancer activities in other cancer types. In this study, 11 chalcones along with quercetin, papaverin, catechin, Sorafenib and 5FU were analyzed for their bioactivities on 6 HCC cell lines and on dental pulp stem cells (DPSC) which differentiates into hepatocytes, and is used as a model for untransformed control cells. 3 of the chalcones (1, 9 and 11) were selected for further investigation due to their high cytotoxicity against liver cancer cells and compared to the other clinically established compounds. Chalcones did not show significant bioactivity ([Formula: see text]) on dental pulp stem cells. Cell cycle analysis revealed that these 3 chalcone-molecules induced SubG1/G1 arrest. Akt protein phosphorylation was inhibited by these molecules in PTEN deficient, drug resistant, mesenchymal like Mahlavu cells leading to the activation of p21 and the inhibition of NF[Formula: see text]B-p65 transcription factor. Hence the chalcones induced apoptotic cell death pathway through NF[Formula: see text]B-p65 inhibition. On the other hand, these molecules triggered p21 dependent activation of Rb protein and thereby inhibition of cell cycle and cell growth in liver cancer cells. Involvement of PI3K/Akt pathway hyperactivation was previously described in survival of liver cancer cells as carcinogenic event. Therefore, our results indicated that these chalcones can be considered as candidates for liver cancer therapeutics particularly when PI3K/Akt pathway involved in tumor development.


Asunto(s)
Chalconas/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Chalconas/química , Relación Dosis-Respuesta a Droga , Desarrollo de Medicamentos , Humanos , Modelos Biológicos , Estructura Molecular , Fosforilación/efectos de los fármacos
6.
Oncotarget ; 10(65): 6981-6996, 2019 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-31857852

RESUMEN

High-grade serous ovarian cancer (HGSOC) is the predominant and most lethal histological type of epithelial ovarian cancer. During the last few years, several new treatment options with PARP inhibitors have emerged. The FDA has approved the PARP inhibitor olaparib (Lynparza™) as maintenance treatment after first-line platinum-containing chemotherapy and olaparib, niraparib (Zejula™) and rucaparib (Rubraca™) are approved as maintenance therapies in the recurrent, platinum-sensitive setting; nevertheless, development of resistance limits their efficacy. In this study, new combinatorial treatment strategies targeting key signaling pathways were explored to enhance the activity of PARP inhibitors in HGSOC. Carboplatin, olaparib, niraparib, the PI3K inhibitor LY294002 and the c-Met inhibitor crizotinib were used for this investigation. PARP inhibitors and carboplatin alone and in combination caused accumulation of DNA double-strand breaks and G2/M cell cycle arrest. In contrast, crizotinib alone or in combination with PARP inhibitors induced accumulation of cells in sub-G1. Crizotinib together with either of the PARP inhibitors was more strongly synergistic than combinations with a PARP inhibitor and carboplatin or the PI3K inhibitor. Sequential combination of crizotinib and a PARP inhibitor resulted in activation of ATM/CHK2 and inhibition of c-Met pathways, contributing to a decrease in RAD51 levels and induction of caspase-3 dependent apoptotic cell death and suggesting that the combination of crizotinib with a PARP inhibitor may be considered and further explored as a new therapeutic strategy in HGSOC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...