Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Nat Commun ; 12(1): 3150, 2021 05 25.
Article En | MEDLINE | ID: mdl-34035297

Super-resolution imaging has been revolutionizing technical analysis in various fields from biological to physical sciences. However, many objects are hidden by strongly scattering media such as biological tissues that scramble light paths, create speckle patterns and hinder object's visualization, let alone super-resolution imaging. Here, we demonstrate non-invasive super-resolution imaging through scattering media based on a stochastic optical scattering localization imaging (SOSLI) technique. After capturing multiple speckle patterns of photo-switchable point sources, our computational approach utilizes the speckle correlation property of scattering media to retrieve an image with a 100-nm resolution, an eight-fold enhancement compared to the diffraction limit. More importantly, we demonstrate our SOSLI to do non-invasive super-resolution imaging through not only static scattering media, but also dynamic scattering media with strong decorrelation such as biological tissues. Our approach paves the way to non-invasively visualize various samples behind scattering media at nanometer levels of detail.


Dynamic Light Scattering/methods , Optical Imaging/methods , Stochastic Processes
2.
Sci Rep ; 9(1): 19507, 2019 12 20.
Article En | MEDLINE | ID: mdl-31862990

Controlling light propagation intentionally through turbid media such as ground glass or biological tissue has been demonstrated for many useful applications. Due to random scattering effect, one of the important goals is to draw a desired shape behind turbid media with a swift and precise method. Feedback wavefront shaping method which is known as a very effective approach to focus the light, is restricted by slow optimization process for obtaining multiple spots. Here we propose a technique to implement feedback wavefront shaping with optical memory effect and optical 4f system to speedy move focus spot and form shapes in 3D space behind scattering media. Starting with only one optimization process to achieve a focusing spot, the advantages of the optical configuration and full digital control allow us to move the focus spot with high quality at the speed of SLM frame rate. Multiple focusing spots can be achieved simultaneously by combining multiple phase patterns on a single SLM. By inheriting the phase patterns in the initial focusing process, we can enhance the intensity of the focusing spot at the edge of memory effect in with 50% reduction in optimization time. With a new focusing spot, we have two partially overlapped memory effect regions, expanding our 3D scanning range. With fast wavefront shaping devices, our proposed technique could potentially find appealing applications with biological tissues.

...