Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Plant Dis ; 107(10): 2924-2928, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36890129

RESUMEN

Yellow mosaic disease of Cajanus scarabaeoides (L.) Thouars (CsYMD) was observed in up to 46% of C. scarabaeoides plants in the mungbean, urdbean, and pigeon pea fields from 22 districts of Chhattisgarh State, India, during 2017 to 2019. The symptoms were characterized by yellow mosaic on green leaves and yellow discoloration of leaves in advanced stages of the disease. Severely infected plants showed shortened internodal length and reduced leaf size. CsYMD was transmissible to healthy C. scarabaeoides and C. cajan by whitefly (Bemisia tabaci). The infected plants developed typical yellow mosaic symptoms on their leaves within 16 and 22 days of inoculation, respectively, suggesting a begomovirus etiology. Molecular analysis revealed that this begomovirus has a bipartite genome composed of DNA-A (2,729 nucleotides) and DNA-B (2,630 nucleotides). Sequence and phylogenetic analyses revealed that the nucleotide sequence of the DNA-A component had the highest identity of 81.1% with DNA-A of Rhynchosia yellow mosaic virus (RhYMV; NC_038885), followed by mungbean yellow mosaic virus (MN602427; 75.3%). DNA-B had the highest identity of 74.0% with DNA-B of RhYMV (NC_038886). As per ICTV guidelines, this isolate had <91% nucleotide identity with DNA-A of any of the begomoviruses reported; so, it is proposed as a new begomovirus species, tentatively named C. scarabaeoides yellow mosaic virus (CsYMV). After agroinoculation with DNA-A and DNA-B clones of CsYMV, all Nicotiana benthamiana plants developed leaf curl symptoms along with light yellowing symptoms 8 to 10 days after inoculation (DAI), while ∼60% of the C. scarabaeoides plants developed yellow mosaic symptoms similar to those observed in the field 18 DAI, thus fulfilling Koch's postulates. From these agro-infected C. scarabaeoides plants, CsYMV was transmissible to healthy C. scarabaeoides plants by B. tabaci. Apart from these hosts, CsYMV also infected and caused symptoms in mungbean and pigeon pea.


Asunto(s)
Begomovirus , Cajanus , Fabaceae , Virus del Mosaico , Cajanus/genética , Genoma Viral/genética , ADN Viral/genética , Filogenia , Virus del Mosaico/genética , Nucleótidos
2.
3 Biotech ; 12(1): 29, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35036277

RESUMEN

Mungbean is one of the important food legumes in the Indian-sub-continent. Yellow mosaic disease, caused by Mungbean yellow mosaic virus and Mungbean yellow mosaic India virus (MYMIV) poses a severe threat to its production. Agroinoculation has been the most preferred way to test the function of genomic components of these viruses. However, the available inoculation methods are not as efficient as whitefly transmission, thereby limiting their usage for screening and biological studies. We hereby report an efficient and reproducible agroinoculation method for achieving maximum (100%) efficiency using tandem repeat infectious agro-constructs of DNA A and DNA B of MYMIV. The present study targeted wounding of various meristematic tissues of root, shoot, parts of germinating seeds and also non-meristematic tissue of stem to test the suitable tissue types for maximum infection. Among the various tissues selected for, the inoculation on the epicotyl region showed maximum infectivity. Further, to enhance the infectivity of MYMIV, different concentrations of acetosyringone, incubation time and Agrobacterium cell density were also standardized. The incubation of wounded sprouted seeds in 1.0 OD of agroculture containing repeat construct of MYMIV for 2-4 h without acetosyringone followed by sowing in soil showed maximum infection of MYMIV within 10-12 days on the first trifoliate leaf. This standardized method is reproducible and has potential to screen germplasm lines and will be useful in mungbean biological/virological studies and breeding programmes. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-021-03088-w.

3.
Virus Res ; 303: 198521, 2021 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-34314770

RESUMEN

Severe leaf curl disease of tomato (ToLCD) was noticed recently in the central parts of India and is an emerging threat to the cultivation of tomato. The genomic components of the begomovirus isolate, DNA A and betasatellite associated with ToLCD were cloned by rolling circle amplification method and sequenced. The sequence analysis revealed that the DNA A (2766 nt) of this isolate had the nucleotide identity of >91% with other strains of Tomato leaf curl Karnataka virus (ToLCKV), hence this isolate is proposed as a strain of ToLCKV, named as ToLCKV-Raipur. Similarly, the betasatellite molecule (1355 nt) had the highest identity of 91.1% with Corchorus yellow vein mosaic betasatellite (CoYVMB) and named as CoYVMB-Raipur. The full-length dimerized clones of these two genomic components were agroinoculated on natural (tomato), experimental (Nicotiana benthamiana) hosts and other 20 plant species belong to six different families. The severe leaf curl symptoms appeared only in the hosts, N. benthamiana, and in tomato inoculated with ToLCKV-Raipur alone and ToLCKV-Raipur with CoYVMB-Raipur after 8 and 16-18 days inoculation, respectively. This isolate was also transmissible to healthy tomato plants by whitefly from the tomato plant agroinoculated with ToLCKV-Raipur alone and with CoYVMB-Raipur and produced symptoms within 14-16 days after inoculation. Interestingly, this isolate infects horse gram and chilli by whitefly transmission and both the hosts showed positive for DNA A alone but not for betasatellite. Quantification of the genomic components of this isolate with the agroinoculated N. benthamiana samples by qRT-PCR results showed that the quantity of ToLCKV-Raipur was enhanced by three-fold while inoculated with CoYVMB-Raipur compared to ToLCKV-Raipur alone inoculated plants. However, CoYVMB-Raipur did not enhance the levels of ToLCKV-Raipur in the agroinoculated tomato plants. This is the first evidence of the natural co-occurrence of ToLCKV with betasatellite, CoYVMB causing ToLCD.


Asunto(s)
Begomovirus , Corchorus , Solanum lycopersicum , Corchorus/genética , ADN , ADN Viral/genética , Genoma Viral , Especificidad del Huésped , Humanos , India , Filogenia , Enfermedades de las Plantas , Nicotiana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...