Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Commun Chem ; 7(1): 149, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38951694

RESUMEN

The neuroprotective transcription factor nuclear receptor-related 1 (Nurr1) has shown great promise as a therapeutic target in Parkinson's and Alzheimer's disease as well as multiple sclerosis but high-quality chemical tools for pharmacological target validation of Nurr1 are rare. We have employed the weak Nurr1 modulator amodiaquine (AQ) and AQ-derived fragments as templates to design a new Nurr1 agonist chemotype by scaffold hopping and fragment growing strategies. Systematic structural optimization of this scaffold yielded Nurr1 agonists with nanomolar potency and binding affinity. Comprehensive in vitro profiling revealed efficient cellular target engagement and compliance with the highest probe criteria. In human midbrain organoids bearing a Parkinson-driving LRRK2 mutation, a novel Nurr1 agonist rescued tyrosine hydroxylase expression highlighting the potential of the new Nurr1 modulator chemotype as lead and as a chemical tool for biological studies.

2.
ChemMedChem ; : e202400327, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38895744

RESUMEN

Photo-switchable nuclear receptor modulators ("photohormones") enable spatial and temporal control over transcription factor activity and are valuable precision tools for biological studies. We have developed a new photohormone chemotype by incorporating a light-switchable motif in the scaffold of a cinalukast-derived PPARα ligand and tuned light-controlled activity by systematic structural variation. An optimized photohormone exhibited PPARα agonism in its light-induced (Z)-configuration and strong selectivity over related lipid-activated transcription factors representing a valuable addition to the collection of light-controlled tools to study nuclear receptor activity.

3.
J Med Chem ; 67(3): 2152-2164, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38237049

RESUMEN

Retinoid X receptors (RXRs, NR2B1-3) hold therapeutic potential in oncology, neurodegeneration, and metabolic diseases, but traditional RXR agonists mimicking the natural ligand 9-cis retinoic acid exhibit poor physicochemical properties, pharmacokinetics, and safety profiles. Improved RXR ligands are needed to exploit RXR modulation as a promising therapeutic concept in various indications beyond its current role in second-line cancer treatment. Here, we report the co-crystal structure of RXR in complex with a novel pyrimidine-based ligand and the structure-informed optimization of this scaffold to highly potent and highly soluble RXR agonists. Focused structure-activity relationship elucidation and rigidization resulted in a substantially optimized partial RXR agonist with low nanomolar potency, no cytotoxic activity, and very favorable physicochemical properties highlighting this promising scaffold for the development of next-generation RXR targeting drugs.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Receptores X Retinoide/metabolismo , Ligandos , Regulación de la Expresión Génica
4.
J Med Chem ; 66(19): 13556-13567, 2023 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-37751901

RESUMEN

The neuroprotective transcription factor Nurr1 was recently found to bind the dopamine metabolite 5,6-dihydroxyindole (DHI) providing access to Nurr1 ligand design from a natural template. We screened a custom set of 14 k extended DHI analogues in silico for optimized descendants to select 24 candidates for microscale synthesis and in vitro testing. Three out of six primary hits were validated as novel Nurr1 agonists with up to sub-micromolar binding affinity, highlighting the druggability of the Nurr1 surface region lining helix 12. In vitro profiling confirmed cellular target engagement of DHI descendants and demonstrated remarkable additive effects of combined Nurr1 agonist treatment, indicating diverse binding sites mediating Nurr1 activation, which may open new avenues in Nurr1 modulation.


Asunto(s)
Regulación de la Expresión Génica , Factores de Transcripción , Ligandos , Factores de Transcripción/metabolismo , Sitios de Unión , Dopamina/metabolismo , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...