Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Exp Med Biol ; 1454: 239-284, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39008268

RESUMEN

Clonorchis sinensis, Opisthorchis viverrini and O. felineus are liver flukes of human and animal pathogens occurring across much of Europe and Asia. Nevertheless, they are often underestimated compared to other, better known neglected diseases in spite of the fact that many millions of people are infected and hundreds of millions are at risk. This is possibly because of the chronic nature of the infection and disease and that it takes several decades prior to a life-threatening pathology to develop. Several studies in the past decade have provided more information on the molecular biology of the liver flukes which clearly lead to better understanding of parasite biology, systematics and population genetics. Clonorchiasis and opisthorchiasis are characterized by a chronic infection that induces hepatobiliary inflammation, especially periductal fibrosis, which can be detected by ultrasonography. These chronic inflammations eventually lead to cholangiocarcinoma (CCA), a usually fatal bile duct cancer that develops in some infected individuals. In Thailand alone, opisthorchiasis-associated CCA kills up to 20,000 people every year and is therefore of substantial public health importance. Its socioeconomic impacts on impoverished families and communities are considerable. To reduce hepatobiliary morbidity and CCA, the primary intervention measures focus on control and elimination of the liver fluke. Accurate diagnosis of liver fluke infections in both human and other mammalian, snail and fish intermediate hosts is important for achieving these goals. While the short-term goal of liver fluke control can be achieved by praziquantel chemotherapy, a comprehensive health education package targeting school children is believed to be more beneficial for a long-term goal/solution. It is recommended that transdisciplinary research or multisectoral control approach including one health and/or eco health intervention strategy should be applied to combat the liver flukes and hence contribute to reduction of CCA in endemic areas.


Asunto(s)
Clonorquiasis , Clonorchis sinensis , Opistorquiasis , Opisthorchis , Animales , Humanos , Opisthorchis/patogenicidad , Opistorquiasis/epidemiología , Opistorquiasis/parasitología , Clonorquiasis/epidemiología , Clonorquiasis/parasitología , Clonorquiasis/prevención & control , Clonorquiasis/tratamiento farmacológico , Clonorchis sinensis/patogenicidad , Clonorchis sinensis/genética , Clonorchis sinensis/fisiología , Neoplasias de los Conductos Biliares/parasitología , Neoplasias de los Conductos Biliares/epidemiología , Neoplasias de los Conductos Biliares/patología , Colangiocarcinoma/parasitología , Colangiocarcinoma/epidemiología
2.
Front Microbiol ; 15: 1353511, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38694805

RESUMEN

Endophytic actinobacteria are a group of bacteria living inside plant tissue without harmful effects, and benefit the host plant. Many can inhibit plant pathogens and promote plant growth. This study aimed to identify a strain of Streptomyces as a novel species and study its antibiotics production. An endophytic actinobacterium, strain TML10T was isolated from a surface-sterilized leaf of a Thai medicinal plant (Terminalia mucronata Craib and Hutch). As a result of a polyphasic taxonomy study, strain TML10T was identified as a member of the genus Streptomyces. Strain TML10T was an aerobic actinobacterium with well-developed substrate mycelia with loop spore chains and spiny surface. Chemotaxonomic data, including cell wall components, major menaquinones, and major fatty acids, confirmed the affiliation of strain TML10T to the genus Streptomyces. The results of the phylogenetic analysis, including physiological and biochemical studies in combination with a genome comparison study, allowed the genotypic and phenotypic differentiation of strain TML10T and the closest related type strains. The digital DNA-DNA hybridization (dDDH), Average nucleotide identity Blast (ANIb), and ANIMummer (ANIm) values between strain TML10T and the closest type strain, Streptomyces musisoli CH5-8T were 38.8%, 88.5%, and 90.8%, respectively. The name proposed for the new species is Streptomyces naphthomycinicus sp. nov. (TML10T = TBRC 15050T = NRRL B-65638T). Strain TML10T was further studied for liquid and solid-state fermentation of antibiotic production. Solid-state fermentation with cooked rice provided the best conditions for antibiotic production against methicillin-resistant Staphylococcus aureus. The elucidation of the chemical structures from this strain revealed a known antimicrobial agent, naphthomycin A. Mining the genome data of strain TML10T suggested its potential as a producer of antbiotics and other valuable compounds such as ε-Poly-L-lysine (ε-PL) and arginine deiminase. Strain TML10T contains the arcA gene encoding arginine deiminase and could degrade arginine in vitro.

3.
Acta Trop ; 254: 107207, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38579961

RESUMEN

Species of the Simulium varicorne group in Thailand have veterinary significance as vectors of haemosporidian parasites. Accurate identification is, therefore, critical to the study of vectors and parasites. We used morphology and molecular markers to investigate cryptic genetic lineages in samples identified as Simulium chumpornense Takaoka & Kuvangkadilok, 2000. We also tested the efficiency of the nuclear internal transcribed spacer 2 (ITS2) marker for the identification of species in this group. Morphological examinations revealed that S. chumpornense lineage A is most similar to S. khelangense Takaoka, Srisuka & Saeung, 2022, with minor morphological differences. They are also genetically similar based on mitochondrial cytochrome c oxidase I (COI) sequences. Geographically, the sampling site where paratypes of S. khelangense were originally collected is <50 km from where S. chumpornense lineage A was collected. We concluded that cryptic lineage A of S. chumpornense is actually S. khelangense. COI sequences could not differentiate S. kuvangkadilokae Pramual and Tangkawanit, 2008 from S. chumpornense and S. khelangense. In contrast, ITS2 sequences provided perfect accuracy in the identification of these species. Molecular analyses of the blood protozoa Leucocytozoon and Trypanosoma demonstrated that S. khelangense carries L. shoutedeni, Leucocytozoon sp., and Trypanosoma avium. The Leucocytozoon sp. in S. khelangense differs genetically from that in S. asakoae Takaoka & Davies, 1995, signaling the possibility of vector-parasite specificity.


Asunto(s)
Complejo IV de Transporte de Electrones , Filogenia , Simuliidae , Animales , Simuliidae/parasitología , Simuliidae/genética , Simuliidae/clasificación , Tailandia , Complejo IV de Transporte de Electrones/genética , ADN Protozoario/genética , ADN Espaciador Ribosómico/genética , Análisis de Secuencia de ADN , Haemosporida/genética , Haemosporida/aislamiento & purificación , Haemosporida/clasificación
4.
Artículo en Inglés | MEDLINE | ID: mdl-38193019

RESUMEN

The genus Mansonella Faust, 1929 includes 29 species, mainly parasites of platyrrhine monkeys in South America and anthropoid apes in Africa. In Malaysia, Mansonella (Tupainema) dunni (Mullin & Orihel, 1972) was described from the common treeshrew Tupaia glis Diard & Duvaucel (Scandentia). In a recent classification of the genus Mansonella, seven subgenera were proposed, with M. (Tup.) dunni as a monotypic species in the subgenus Tupainema. In this study, we collected new material of M. (Tup.) dunni from common treeshrews in Peninsular Malaysia and redescribed the morphological features of this species. We found that M. (Tup.) dunni differs from M. (Cutifilaria) perforata Uni et al., 2004 from sika deer Cervus nippon (Cetartiodactyla) in Japan, with regards to morphological features and predilection sites in their respective hosts. Based on multi-locus sequence analyses, we examined the molecular phylogeny of M. (Tup.) dunni and its Wolbachia genotype. Species of the genus Mansonella grouped monophyletically in clade ONC5 and M. (Tup.) dunni was placed in the most derived position within this genus. Mansonella (Tup.) dunni was closely related to M. (M.) ozzardi (Manson, 1897) from humans in Central and South America, and most distant from M. (C.) perforata. The calculated p-distances between the cox1 gene sequences for M. (Tup.) dunni and its congeners were 13.09% for M. (M.) ozzardi and 15.6-16.15% for M. (C.) perforata. The molecular phylogeny of Mansonella spp. thus corroborates their morphological differences. We determined that M. (Tup.) dunni harbours Wolbachia endosymbionts of the supergroup F genotype, in keeping with all other Mansonella species screened to date.

5.
Parasitol Res ; 123(1): 103, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38236312

RESUMEN

Five newly obtained nuclear ribosomal transcription unit (rTU) sequences from Echinostomatidae and Echinochasmidae are presented. The inter- and intrafamilial relationships of these and other families in the suborder Echinostomata are also analyzed. The sequences obtained are the complete rTU of Artyfechinostomum malayanum (9,499 bp), the near-complete rTU of Hypoderaeum conoideum (8,076 bp), and the coding regions (from 5'-terminus of 18S to 3'-terminus of 28S rRNA gene) in Echinostoma revolutum (6,856 bp), Echinostoma miyagawai (6,854 bp), and Echinochasmus japonicus (7,150 bp). Except for the longer first internal transcribed spacer (ITS1) in Echinochasmus japonicus, all genes and spacers were almost identical in length. Comprehensive maximum-likelihood phylogenies were constructed using the PhyML software package. The datasets were either the concatenated 28S + 18S rDNA sequences (5.7-5.8 kb) from 60 complete rTUs of 19 families or complete 28S sequences only (about 3.8-3.9 kb) from 70 strains or species of 22 families. The phylogenetic trees confirmed Echinostomatoidea as monophyletic. Furthermore, a detailed phylogeny constructed from alignments of 169 28S D1-D3 rDNA sequences (1.1-1.3 kb) from 98 species of 50 genera of 10 families, including 154 echinostomatoid sequences (85 species/42 genera), clearly indicated known generic relationships within Echinostomatidae and Echinochasmidae and relationships of families within Echinostomata and several other suborders. Within Echinostomatidae, Echinostoma, Artyfechinostomum, and Hypoderaeum appeared as monophyletic, while Echinochasmus (Echinochasmidae) was polyphyletic. The Echinochasmidae are a sister group to the Psilostomidae. The datasets provided here will be useful for taxonomic reappraisal as well as studies of evolutionary and population genetics in the superfamily Echinostomatoidea, the sole superfamily in the suborder Echinostomata.


Asunto(s)
Echinostoma , Echinostomatidae , Platelmintos , Trematodos , Humanos , Animales , Filogenia , Echinostoma/genética , ADN Ribosómico/genética
6.
Cells ; 12(24)2023 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-38132108

RESUMEN

Mesenchymal stromal cells (MSCs) have recently been shown to play an important role in the growth and progression of many solid tumors, including cholangiocarcinoma (CCA). The human placental amniotic membrane (hPAM) is one of the most favorable sources of MSCs due to its availability and non-invasive harvesting procedure. However, the role of human placental amniotic membrane mesenchymal stromal cells (hPAMSCs) in the growth and progression of human CCA has not yet been determined. This study investigates the effects of conditioned medium derived from hPAMSCs (PA-CM) on the properties of three human CCA cell lines and explores possible mechanisms of action. Varying concentrations of PA-CM were used to treat CCA cells to determine their effects on the proliferation and apoptosis of CCA cells. The results showed that PA-CM inhibited the proliferation and colony-forming capacity of KKU100, KKU213A, and KKU213B cells. PA-CM also promoted the apoptosis of these CCA cells by causing the loss of mitochondrial membrane potential. Western Blotting confirmed that PA-CM induced CCA cell apoptosis by increasing the levels of the Bax/Bcl-2 ratio, cleaved caspase 3, and cleaved PARP, possibly by inhibiting the IL-6/JAK2/STAT3 signaling pathway. Moreover, our in vivo study also confirmed the suppressive effect of hPAMSCs on CCA cells by showing that PA-CM reduced tumor volume in nude mice transplanted with human CCA cells. Taken together, our results demonstrate that PA-CM has potent tumor-suppressive effects on human CCA cells and could potentially be used in combination with chemotherapy to develop a more effective treatment for CCA patients.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Células Madre Mesenquimatosas , Embarazo , Animales , Ratones , Humanos , Femenino , Interleucina-6/metabolismo , Medios de Cultivo Condicionados/farmacología , Medios de Cultivo Condicionados/metabolismo , Amnios/metabolismo , Ratones Desnudos , Proliferación Celular , Placenta/metabolismo , Colangiocarcinoma/patología , Transducción de Señal , Conductos Biliares Intrahepáticos/patología , Neoplasias de los Conductos Biliares/patología , Apoptosis , Células Madre Mesenquimatosas/metabolismo , Janus Quinasa 2/metabolismo
7.
Animals (Basel) ; 13(20)2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37893924

RESUMEN

Opisthorchiasis and clonorchiasis are prevalent in Southeast and Far-East Asia, which are caused by the group 1 carcinogenic liver flukes Opisthorchis viverrini sensu lato and Clonorchis sinensis infection. There have been comprehensive investigations of systematics and genetic variation of these liver flukes. Previous studies have shown that O. viverrini is a species complex, called "O. viverrini sensu lato". More comprehensive investigations of molecular systematics and population genetics of each of the species that make up the species complex are required. Thus, other polymorphic genetic markers need to be developed. Therefore, this study aimed to characterize the intron regions of taurocyamine kinase gene (TK) to examine the genetic variation and population genetics of O. viverrini and C. sinensis collected from different geographical isolates and from a range of animal hosts. We screened seven intron regions embedded in TK. Of these, we selected an intron 5 of domain 1 (TkD1Int5) region to investigate the genetic variation and population genetics of theses liver flukes. The high nucleotide and haplotype diversity of TkD1Int5 was detected in O. viverrine. Heterozygosity with several insertion/deletion (indel) regions were detected in TkD1Int5 of the O. viverrine samples, whereas only an indel nucleotide was detected in one C. sinensis sample. Several O. viverrine samples contained three different haplotypes within a particular heterozygous sample. There were no genetic differences between C. sinensis isolated from various animal host. Heterozygous patterns specifically detected in humans was observed in C. sinensis. Thus, TkD1Int5 is a high polymorphic genetic marker, which could be an alternative marker for further population genetic investigations of these carcinogenic liver flukes and other related species from a wide geographical distribution and variety of animal hosts.

8.
Recent Results Cancer Res ; 219: 7-25, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37660329

RESUMEN

Opisthorchis viverrini plays a key role as the carcinogenic liver fluke causing bile duct cancer in Southeast Asia. A comprehensive understanding of its life cycle, distribution, systematics, and population genetics is critically important as they underpin the effective development and establishment of future prevention and control programs that center on opisthorchiasis and cholangiocarcinoma. This chapter provides detailed information concerning the basic biology and updated information of O. viverrini related to its host life cycle, transmission route via raw, partially cooked or fermented freshwater cyprinid fish, endemic areas, and the discovery of new foci. Previous sequential studies over the last two decades on the phylogenetic and systematic relationships, genetic variation, and population genetics of O. viverrini as well as its snail intermediate host Bithynia spp. are presented and discussed, which have led to the currently known complex species level systematics and population genetics framework of this host-parasite system. Additionally, further directions for comprehensive research are suggested to provide a more complete understanding of liver fluke, O. viverrini-related cholangiocarcinoma.


Asunto(s)
Opisthorchis , Opisthorchis/genética , Animales , Filogenia , Genética de Población , Humanos , Colangiocarcinoma/parasitología , Estadios del Ciclo de Vida , Neoplasias de los Conductos Biliares/parasitología
9.
Res Vet Sci ; 162: 104939, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37453229

RESUMEN

Blastocystis is a parasitic protist of a variety of hosts, including humans. Mapping the distribution of Blastocystis and its genetic variants across different host species can help us understand the epidemiology of this organism and its role in health and disease. This study aimed to identify subtypes of Blastocystis detected in different animal hosts in Thailand. A total of 825 fecal samples belonging to 18 vertebrate orders, 36 families, 68 genera, and 80 species were collected. Of these, 111 specimens were Blastocystis-positive by culture. Seventy-nine samples were subjected to small subunit (SSU) ribosomal DNA amplification by PCR, and reliable subtype data were obtained for 61 specimens. At least 14 subtypes (ST), namely ST1 to ST10, ST14/ST24/ST25 complex, ST23, ST26, and ST29 were detected. In addition, Blastocystis was found in tortoises. ST1 (3.2%) and ST5 (11.5%) were found in pigs, ST2 (1.6%) and ST3 (3.2%) in non-human primates, ST4 (14.7%) in rodents and ruminants, ST6 (4.9%), ST7 (30%), ST9 (1.6%), and ST29 (1.6%) in birds, ST8 (6.6%) in Green peafowl and East Asian Porcupine, and ST10 (4.9%), ST14/ST24/ST25 (9.8%), ST23 (1.6%) and ST26 (1.6%) in ruminants. The sequence recovered from the elongated tortoises (Indotestudo elongata) (3.2%) was phylogenetically placed within the reptilian cluster of Blastocystis, for which no subtype system is available yet. Of note, we did not obtain Blastocystis sequences from any of the many canids and felids sampled in the study, and our data are in support of host specificity of Blastocystis, according to both colonization and subtype distribution.


Asunto(s)
Infecciones por Blastocystis , Blastocystis , Animales , Blastocystis/clasificación , Blastocystis/genética , Blastocystis/aislamiento & purificación , Infecciones por Blastocystis/epidemiología , Infecciones por Blastocystis/parasitología , Especificidad del Huésped , Tailandia/epidemiología , Filogenia , Prevalencia , ADN Ribosómico/genética
10.
Sci Rep ; 12(1): 11341, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35790790

RESUMEN

Cholangiocarcinoma (CCA) is an aggressive malignancy arising from the damaged epithelial cells of the biliary tract. Previous studies have reported that the multi-potent mesenchymal stem cells (MSCs) activate a series of tumor signaling pathways by releasing several cytokines to influence tumor cell development. However, the roles and mechanisms of human chorion-derived MSCs (CH-MSCs) in cholangiocarcinoma progression have not been fully addressed. This present study aims to examine the effects of conditioned media derived from CH-MSCs (CH-CM) on CCA cell lines and investigate the respective underlying mechanism of action. For this purpose, MSCs were isolated from chorion tissue, and three cholangiocarcinoma cell lines, namely KKU100, KKU213A, and KKU213B, were used. MTT assay, annexin V/PI analysis, and JC-1 staining were used to assess the effects of CH-CM on proliferation and apoptosis of CCA cells, respectively. Moreover, the effect of CH-CM on caspase-dependent apoptotic pathways was also evaluated. The western blotting assay was also used for measuring the expression of JAK2/STAT3 signaling pathway-associated proteins. The results showed that CH-CM suppressed proliferation and promoted apoptosis of CCA cell lines. CH-CM treatment-induced loss of mitochondrial membrane potential (∆Ψm) in CCA cell lines. The factors presented in the CH-CM also inhibited JAK2/STAT3 signaling, reduced the expression of BCL-2, and increased BAX expression in CCA cells. In conclusion, our study suggests that the CH-CM has a potent anti-cancer effect on cholangiocarcinoma cells and thus provides opportunities for use in alternative cell therapy or in combination with a conventional chemotherapeutic drug to increase the efficiency of CCA treatment.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Células Madre Mesenquimatosas , Apoptosis , Conductos Biliares Intrahepáticos , Línea Celular , Corion , Humanos , Factores Inmunológicos , Janus Quinasa 2 , Neutropenia , Factor de Transcripción STAT3 , Transducción de Señal
11.
Exp Appl Acarol ; 86(4): 535-548, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35230584

RESUMEN

In total, 160 ticks infesting cattle in the northeast region of Thailand were collected and used for molecular investigation. Three tick species-Rhipicephalus microplus Canestrini, Rhipicephalus haemaphysaloides Supino and Haemaphysalis bispinosa Neumann-were identified based on morphology and DNA sequences of mitochondrial cytochrome c oxidase subunit 1 (CO1) and 16S ribosomal RNA (16S rRNA). In total, 26 and seven unique haplotypes of the CO1 and 16S rRNA genes, respectively, were recovered. Phylogenetic analysis using the CO1 sequence revealed that the R. microplus from northeastern Thailand were grouped into the previously described clades A and C, whereas the 16S rRNA phylogenetic tree assigned all isolates of R. microplus from Northeast Thailand into the previously described clade B. Clade C of the CO1 phylogenetic tree is a new genetic assemblage recently discovered from India and Malaysia, which has now been detected in our study. The haplotype network also demonstrated that R. microplus is divided into two haplogroups corresponding to the assemblage of the CO1 phylogenetic tree. Our findings strongly support the previous genetic assemblage classification and evidence that R. microplus from Northeast Thailand is a species complex comprising at least two genetic assemblages, i.e., clades A and C. However, further investigation is needed and should involve more comprehensive genetic and morphological analyses and cover a larger part of their distributional range throughout Southeast Asia.


Asunto(s)
Ixodidae , Rhipicephalus , Infestaciones por Garrapatas , Animales , Bovinos , Variación Genética , Ixodidae/genética , Filogenia , ARN Ribosómico 16S/genética , Rhipicephalus/genética , Tailandia , Infestaciones por Garrapatas/epidemiología , Infestaciones por Garrapatas/veterinaria
12.
Parasitology ; 149(3): 407-417, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35264269

RESUMEN

Several trematodes including Opisthorchis viverrini utilize Bithynia siamensis goniomphalos as a snail intermediate host in their life cycles. In order to capture a comprehensive range of host­parasite interactions and their transmission dynamic patterns, B. s. goniomphalos were sampled monthly over 4 consecutive years in an irrigated paddy-field habitat in northeast Thailand. Using a standard cercarial shedding method, a high diversity of trematodes (17 types) was recovered. Virgulate xiphidiocercariae were the most prevalent (7.84%) followed by O. viverrini (0.71%). In addition to seasonal and environmental factors, the quantity of irrigation water for rice cultivation correlated with transmission dynamics of trematodes in B. s. goniomphalos. The peak prevalence of all trematode infections combined in the snails shifted from the cool-dry season in 2010­2012 to the hot-dry season in 2013 associated with an increasing quantity of water irrigation. A low frequency of mixed trematode infections was found, indicating that the emergence of virgulate cercariae, but not of O. viverrini, was negatively impacted by the presence of other trematodes in the same snail. Taken together, the observed results suggest that interactions between host and parasite, and hence transmission dynamics, depend on specific characteristics of the parasite and environmental factors including irrigated water for rice cultivation.


Asunto(s)
Opisthorchis , Infecciones por Trematodos , Animales , Cercarias , Dinámica Poblacional , Caracoles/parasitología , Tailandia/epidemiología , Infecciones por Trematodos/epidemiología
13.
Parasitol Res ; 121(3): 899-913, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35142926

RESUMEN

The complete mitochondrial genome (mitogenome or mtDNA) of the trematode Echinostoma malayanum Leiper, 1911 was fully determined and annotated. The circular mtDNA molecule comprised 12 protein-coding genes (PCGs) (cox1 - 3, cob, nad1 - 6, nad4L, atp6), two mitoribosomal RNAs (MRGs) (16S or rrnL and 12S or rrnS), and 22 transfer RNAs (tRNAs or trn), and a non-coding region (NCR) rich in long and short tandem repeats (5.5 LRUs/336 bp/each and 7.5 SRUs/207 bp/each). The atp8 gene is absent and the 3' end of nad4L overlaps the 5' end of nad4 by 40 bp. Special DHU-arm missing tRNAs for Serine were found for both tRNASer1(AGN) and tRNASer2(UCN). Codons of TTT (for phenylalanine), TTG (for leucine), and GTT (for valine) were the most, and CGC (for Arginine) was the least frequently used. A similar usage pattern was seen in base composition, AT and GC skewness for PCGs, MRGs, and mtDNA* (coding cox3 to nad5) in E. malayanum and Echinostomatidae. The nucleotide use is characterized by (T > G > A > C) for PCGs/mtDNA*, and by (T > G ≈ A > C) for MRGs. E. malayanum exhibited the lowest genetic distance (0.53%) to Artyfechinostomum sufrartyfex, relatively high to the Echinostoma congeners (13.20-13.99%), higher to Hypoderaeum conoideum (16.18%), and the highest to interfamilial Echinochasmidae (26.62%); Cyclocoelidae (30.24%); and Himasthlidae (25.36%). Topology indicated the monophyletic position between E. malayanum/A. sufrartyfex and the group of Echinostoma caproni, Echinostoma paraensei, Echinostoma miyagawai, and Echinostoma revolutum, rendering Hypoderaeum conoideum and unidentified Echinostoma species paraphyletic. The strictly closed genomic/taxonomic/phylogenetic features (including base composition, skewness, codon usage/bias, genetic distance, and topo-position) reinforced Echinostoma malayanum to retake its generic validity within the Artyfechinostomum genus.


Asunto(s)
Echinostoma , Echinostomatidae , Genoma Mitocondrial , Trematodos , Animales , Echinostoma/genética , Echinostomatidae/genética , Filogenia , Trematodos/genética
14.
Infect Genet Evol ; 97: 105182, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34902557

RESUMEN

The group 1 carcinogen, the liver fluke Opisthorchis viverrini is the causative agent of opisthorchiasis and subsequent bile duct cancer (cholangiocarcinoma; CCA), which is an important public health problem in Southeast Asia. Bithynia snails are known to be the sole intermediate host of O. viverrini, and distributed throughout endemic areas of opisthorchiasis. Since 2001, the genetic variation investigation of O. viverrini has progressively been investigated. Comprehensive genetic variation studies of O. viverrini and Bithynia snails were undertaken and consecutively published in 2007 by Saijuntha and colleagues. These studies provided genetic evidence that O. viverrini and Bithynia snails are both species complex with evidence of co-evolution. Later, several studies have provided data in support of this finding, and have continuously to date reinforced that both O. viverrini and Bithynia are species complexes. Moreover, studies have shown that genetic variation of O. viverrini is related to geographical, temporal, fish host species including geographical genetic variation of its snail host, Bithynia siamensis sensu lato. This is significant and important in our understanding of the evolution and phylogenetic relationships between species within the O. viverrini and Bithynia species complexes. A comprehensive knowledge of the systematics and population genetics of O. viverrini and Bithynia snails provides a sound basis to instigate and develop effective prevention and control programs targeting opisthorchiasis and CCA in the endemic areas of Southeast Asia. Thus, this review examines the historical series of investigations of the systematics and population genetics of O. viverrini including Bithynia spp. in Southeast Asia since molecular genetic investigations commenced some 20 years ago.


Asunto(s)
Variación Genética , Opisthorchis/clasificación , Caracoles/parasitología , Animales , Cambodia , Interacciones Huésped-Parásitos , Laos , Opisthorchis/genética , Tailandia
15.
Artículo en Inglés | MEDLINE | ID: mdl-36589876

RESUMEN

Species of the genus Pelecitus Railliet & Henry, 1910 the most widely distributed avian filariae in Africa and South America. Zoonotic cases in humans were reported in South America. While investigating the filarial fauna of wild animals in Malaysia, we discovered an undescribed filaria from the swollen footpad of the left leg of Copsychus malabaricus (Scopoli) in Pahang, Peninsular Malaysia. Adults of both sexes have a corkscrew-shaped body. Based on comparison of their morphological characteristics (i.e. pre-oesophageal cuticular ring distinct, oesophagus divided, vulva protuberant and situated at the level of anterior half of oesophagus, spicules strongly sclerotized and left spicule with broad blade) with other Pelecitus species, they are here described as Pelecitus copsychi Uni, Mat Udin & Martin n. sp. Multi-locus sequence analyses based on seven genes (12S rDNA, cox1, 18S rDNA, 28S rDNA, MyoHC, rbp1 and hsp70) were performed to determine the phylogenetic position of the new species. The calculated p-distance between the cox1 gene sequences for P. copsychi n. sp. and Pelecitus fulicaeatrae (Diesing, 1861) was 14.1%. Intraspecific genetic variation between two individuals of the new species was 0.4%. In both the Bayesian inference and maximum-likelihood trees, P. copsychi n. sp. was positioned in the second clade of ONC5, containing three genera of the subfamily Dirofilariinae (Foleyella Seurat, 1917, Pelecitus and Loa Stiles, 1905). Immunostaining and molecular analyses remained negative for the presence of Wolbachia endosymbionts. Our findings corroborate the division of the subfamily Dirofilariinae into ONC3 with Dirofilaria Railliet & Henry, 1911 and ONC5 with Pelecitus.

16.
Acta Trop ; 221: 105980, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34048791

RESUMEN

The freshwater snails, Bithynia are the first intermediate hosts of the liver fluke, Opisthorchis viverrini, the causative agent of cholangiocarcinoma (CCA) in Southeast Asia. In Thailand, there are three traditionally recognized taxa of Bithynia: Bithynia funiculata; B. siamensis siamensis; B. s. goniomphalos. This study examines the geographical distribution and genetic structure of Bithynia species from five previously reported water catchments and six new catchments in Thailand. Of these, three new catchments Kok, Wang, and Nan are from the north and the remaining three new catchments are Phetchaburi, Prachuap Khiri Khan Coast, Mae Klong from the west of Thailand. We sampled 291 Bithynia snails from 52 localities in 11 catchment systems in the northern, western and central regions of Thailand. Mitochondrial cytochrome c oxidase subunit 1 (COI) and 16S ribosomal DNA (16S rDNA) sequences were used to examine genetic diversity of Bithynia snails which revealed 200 and 27 haplotypes of COI and 16S rDNA, respectively. However, as 16S rDNA is a conserved gene, it is not suitable to distinguish Bithynia at the species and sub-species levels in our study. The phylogenetic tree and haplotype network analyses included sequences of COI from GenBank. B. funiculata was found only in the north of Thailand and the genetic structure did not differ among populations. Genetic differentiation (ΦST) analyses showed that B. s. goniomphalos contained three distinct lineages. Lineage I contained B. s. goniomphalos from the vast majority of catchment systems in Thailand and Lao PDR. Lineage II contained all B. s. goniomphalos from the Prachin Buri and Bang Pakong catchment systems in eastern and central Thailand, including samples from all catchment systems in Cambodia. While lineage III contained B. s. goniomphalos from the Songkram and Nam Kam catchment systems in Thailand and the Nam Ngum and Huai Som Pak catchment systems in Lao PDR. Furthermore, results showed that all samples of B. s. siamensis were classified into one lineage and placed phylogenetically between B. s. goniomphalos lineages I and II. Thus, the taxonomic status of B. s. goniomphalos and B. s. siamensis requires reassessment, and they should be reclassified as belonging to the species complex "Bithynia siamensis sensu lato".


Asunto(s)
Opistorquiasis , Opisthorchis , Animales , ADN Mitocondrial/genética , Estructuras Genéticas , Opisthorchis/genética , Filogenia , Caracoles/genética , Tailandia
17.
Infect Genet Evol ; 90: 104761, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33577999

RESUMEN

Southeast Asian lung flukes, the causative agents of human and animal paragonimiasis, comprise at least 14 species. Of these, seven species; Paragonimus bangkokensis, P. harinasutai, P. macrorchis, P. siamensis, P. westermani, P. heterotremus and P. pseudoheterotremus were studied. Two regions of domain 1 of taurocyamine kinase; TkD1 (exon) and TkD1Int2 (intron 2), were used as genetic markers for elucidating their genetic differentiation, genetic variation, and heterozygosity. The TkD1 region was conserved between these species but can potentially be used to differentiate all seven species. However, the TkD1Int2 region had a high level of polymorphism, which is suitable for investigation of genetic variation within or between closely related species, especially P. heterotremus and P. pseudoheterotremus as well as for a phylogenetic analyses of the genus Paragonimus. Heterozygosity was mostly observed in DNA samples extracted from adult P. heterotremus including samples taken from sputum of paragonimiasis patients, whereas DNA extracted from metacercariae was not, except in the samples from Myanmar. Our findings provide evidence of DNA recombination and incomplete lineage sorting of P. heterotremus and P. pseudoheterotremus in TkD1Int2, which suggesting gene flow between these two species.


Asunto(s)
Núcleo Celular/genética , ADN de Helmintos/genética , Variación Genética , Paragonimus/genética , Animales , Asia Sudoriental
18.
One Health ; 12: 100211, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33490359

RESUMEN

The freshwater snail Indoplanorbis exustus play an important role as the sole intermediate host of several medically- and economically-important trematodes, especially zoonotic schistosomes and echinostomes, which can infect and cause diseases in livestock and people. This study aims to explore the mitochondrial cytochrome c oxidase subunit 1 sequence variation of I. exustus collected from new geographical areas; 459 specimens of I. exustus were collected from 43 localities in South and Southeast Asia. The 42 haplotypes (Ie1 - Ie42) we detected were classified into haplogroups I - V. Phylogenetic analyses revealed five major clades, A - E, in concordance with all previous studies. Clade E contained two subclades, E1 (haplogroup I) and E2 (haplogroup II). The most widespread genetic group was subclade E1. Clade A, clade B (haplogroup V), and clade C (haplogroup IV) were found only in South Asia, whereas clade D (haplogroup III) was specifically found in Southeast Asia. In Thailand, I. exustus showed high genetic divergence with 21 haplotypes. Several isolates showed significant genetic differences from others with unique haplotype(s). Hence, we confidently conclude our findings support all previous studies that I. exustus is a species complex with at least four major lineages and five haplogroups. Our additional analyses of 35 samples from Sri Lanka showed these were indeed an independent genetic group as previously found, but they can now be classified as a unique group forming subclade E2 (haplogroup II) of I. exustus sensu lato.

19.
Res Vet Sci ; 135: 404-411, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33158552

RESUMEN

Several foodborne zoonotic trematodes of the family Opisthorchiidae have been reported to infect people, specifically two genera, Clonorchis and Opisthorchis. Three species Clonorchis sinensis, Opisthorchis felineus and Opisthorchis viverrini are the most extensivley studied of the Opisthorchiidae. At least 680 million people worldwide are at risk of infection of these liver flukes through the consumption of raw or partially cooked freshwater cyprinid fish. An estimated 45 million people in Europe and Asia are currently infected with these liver flukes. Of these, the 35 million are infected with C. sinensis mainly in China, 10 million with O. viverrini in Southeast Asia, and 1.2 million with O. felineus in Eastern Europe and Russia. These liver flukes have been proven to be causative agents of bile duct cancer or cholangiocarcinoma (CCA). A multidisciplinary program should be implemented involving comprehensive research on molecular genetics, diagnosis, treatment, prevention, as well as educational and control programs should progressively be introduced and applied in endemic regions of O. viverrini, O. felineus and C. sinensis throughout their ranges, hence, opisthorchiasis and clonorchiasis free communities can be realised globally.


Asunto(s)
Enfermedades Transmitidas por los Alimentos/parasitología , Carne/parasitología , Opisthorchidae , Infecciones por Trematodos/parasitología , Animales , Peces , Humanos , Infecciones por Trematodos/complicaciones , Infecciones por Trematodos/transmisión
20.
Int J Parasitol ; 50(14): 1133-1144, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32866491

RESUMEN

Infection by the small liver fluke, Opisthorchis viverrini, causes serious public health problems, including cholangiocarcinoma, in Thailand and southeastern Asian countries. Previous studies have reported that O. viverrini represents a species complex with varying levels of genetic differentiation in Thailand and Lao PDR. In this study, we re-examined population genetic structure and genetic diversity of O. viverrini using extensive samples of the parasite collected over 15 years from 12 geographical localities in Thailand and eight localities in Lao PDR. Parasite life-cycle stages of 721 individuals of O. viverrini (91 cercariae, 230 metacercariae and 400 adult worms) were genotyped using 12 microsatellite loci. Metacercariae exhibited genetic diversity comparable with that of experimentally raised adults: metacercariae can therefore be used to represent O. viverrini populations without the need for laboratory definitive hosts. Data obtained from larval as well as adult worms identified two distinct genetic clusters of O. viverrini. Sequences of a portion of the mitochondrial cox1 gene strongly supported the existence of these two clusters. One, the widespread cluster, was found at all sampled sites. The second cluster occurred only in Phang Khon District, Sakon Nakhon Province (SPk), within the Songkram River wetland in Thailand. A striking feature of our data relates to the temporal dynamics of the SPk cluster, which was largely replaced by representatives of the widespread cluster over time. If the SPk cluster is excluded, no marked genetic differences were seen among O. viverrini populations from Thailand and Lao PDR. The underlying causes of the observed population structure and population dynamics of O. viverrini are not known.


Asunto(s)
ADN Mitocondrial/genética , Geografía , Repeticiones de Microsatélite , Opistorquiasis , Opisthorchis , Animales , Opistorquiasis/parasitología , Opisthorchis/genética , Tailandia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA