Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Leuk Lymphoma ; 59(2): 448-459, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28730859

RESUMEN

One of the major symptoms of myelodysplastic syndromes (MDS) is severe cytopenia. Despite cytokine therapies, such as erythropoiesis-stimulating agents, many patients still require blood transfusions, and the development of new therapeutic approaches is needed. In this work, we studied the effects of the inosine-5'-monophosphate (IMP) dehydrogenase (IMPDH) inhibitor FF-10501 on erythropoiesis of human hematopoietic cells. Differentiation of K562 chronic myeloid leukemia cells to an erythroid lineage was promoted by FF-10501 in a dose-dependent manner. Interestingly, we found that metabolic conversion of IMP to hypoxanthine leads to elevation of reactive oxygen species (ROS). The differentiative effects of FF-10501 were abolished by the ROS scavenger dimethylthiourea or the p38 MAPK inhibitor SB203580. Furthermore, FF-10501 promoted erythropoiesis from CD34+ hematopoietic stem/progenitor cells, accompanied with ROS accumulation, while high-dose FF-10501 mainly showed cytotoxic effects. These findings denote the potential of IMPDH inhibition therapy with FF-10501 in amelioration of anemia in MDS patients.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Eritropoyesis/efectos de los fármacos , IMP Deshidrogenasa/antagonistas & inhibidores , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Apoptosis/efectos de los fármacos , Células de la Médula Ósea/citología , Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/metabolismo , Estudios de Casos y Controles , Ciclo Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Linaje de la Célula/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/metabolismo , Humanos , Síndromes Mielodisplásicos , Fagocitosis/efectos de los fármacos , Fagocitosis/inmunología
2.
Pharmacol Res Perspect ; 4(1): e00206, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26977297

RESUMEN

Resistance to azacitidine is a major issue in the treatments of myelodysplastic syndrome and acute myeloid leukemia, and previous studies suggest that changes in drug metabolism are involved in the resistance. Therefore, drugs with mechanisms resistant or alternative to such metabolic changes have been desired for the treatment of resistant disease. We generated azacitidine-resistant cells derived from SKM-1 and MOLM-13 leukemia cell lines in vitro, analyzed the mechanisms, and examined the impact on the efficacy of other antimetabolic drugs. It appeared that the cell growth-inhibitory effect of azacitidine, expression levels of uridine-cytidine kinase 2, and the concentrations of azacitidine triphosphate were remarkably decreased in the resistant cells compared with those in parent cells. These results were consistent with previous observations that azacitidine resistance is derived from metabolic changes. Cross-resistance of greater than 10-fold (shift in IC50 value) was observed in azacitidine-resistant cells for decitabine and for cytarabine, but not for gemcitabine or the inosine-5'-monophosphate dehydrogenase (IMPDH) inhibitors FF-10501 and mycophenolate mofetil (cross-resistance to 5-fluorouracil was cell line dependent). The IMPDH inhibitors maintained their cell growth-inhibitory activities in the azacitidine-resistant cell lines, in which the levels of adenine phosphoribosyltransferase (which converts FF-10501 to its active form, FF-10501 ribosylmonophosphate [FF-10501RMP]), FF-10501RMP, and the target enzyme, IMPDH, were equivalent to those in the parent cell lines. These results suggest that an IMPDH inhibitor such as FF-10501 could be an alternative therapeutic treatment for leukemia patients with acquired resistance to azacitidine.

3.
J Biol Chem ; 288(7): 5027-38, 2013 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-23269686

RESUMEN

A small number of transcription factors, including Oct-3/4 and Sox2, constitute the transcriptional network that maintains pluripotency in embryonic stem (ES) cells. Previous reports suggested that some of these factors form a complex that binds the Oct-Sox element, a composite sequence consisting of closely juxtaposed Oct-3/4 binding and Sox2 binding sites. However, little is known regarding the components of the complex. In this study we show that Sall4, a member of the Spalt-like family of proteins, directly interacts with Sox2 and Oct-3/4. Sall4 in combination with Sox2 or Oct-3/4 simultaneously occupies the Oct-Sox elements in mouse ES cells. Overexpression of Sall4 in ES cells increased reporter activities in a luciferase assay when the Pou5f1- or Nanog-derived Oct-Sox element was included in the reporter. Microarray analyses revealed that Sall4 and Sox2 bound to the same genes in ES cells significantly more frequently than expected from random coincidence. These factors appeared to bind the promoter regions of a subset of the Sall4 and Sox2 double-positive genes in precisely similar distribution patterns along the promoter regions, suggesting that Sall4 and Sox2 associate with such Sall4/Sox2-overlapping genes as a complex. Importantly, gene ontology analyses indicated that the Sall4/Sox2-overlapping gene set is enriched for genes involved in maintaining pluripotency. Sall4/Sox2/Oct-3/4 triple-positive genes identified by referring to a previous study identifying Oct-3/4-bound genes in ES cells were further enriched for pluripotency genes than Sall4/Sox2 double-positive genes. These results demonstrate that Sall4 contributes to the transcriptional network operating in pluripotent cells together with Oct-3/4 and Sox2.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Células Madre Embrionarias/citología , Regulación de la Expresión Génica , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Factores de Transcripción SOXB2/metabolismo , Factores de Transcripción/metabolismo , Animales , Línea Celular , Inmunoprecipitación de Cromatina , Genes Reporteros , Ratones , Modelos Genéticos , Análisis de Secuencia por Matrices de Oligonucleótidos , Interferencia de ARN , Células Madre/citología , Transcripción Genética , Dedos de Zinc
4.
Curr Biol ; 22(20): 1932-7, 2012 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-22959349

RESUMEN

Efficient chromosomal movements are important for the fidelity of chromosome segregation during mitosis; however, movements are constrained during interphase by tethering of multiple domains to the nuclear envelope (NE). Higher eukaryotes undergo open mitosis accompanied by NE breakdown, enabling chromosomes to be released from the NE, whereas lower eukaryotes undergo closed mitosis, in which NE breakdown does not occur. Although the chromosomal movements in closed mitosis are thought to be restricted compared to open mitosis, the cells overcome this problem by an unknown mechanism that enables accurate chromosome segregation. Here, we report the spatiotemporal regulation of telomeres in Schizosaccharomyces pombe closed mitosis. We found that the telomeres, tethered to the NE during interphase, are transiently dissociated from the NE during mitosis. This dissociation from the NE is essential for accurate chromosome segregation because forced telomere tethering to the NE causes frequent chromosome loss. The phosphorylation of the telomere protein Rap1 during mitosis, primarily by Cdc2, impedes the interaction between Rap1 and Bqt4, a nuclear membrane protein, thereby inducing telomere dissociation from the NE. We propose that the telomere dissociation from the NE promoted by Rap1 phosphorylation is critical for the fidelity of chromosome segregation in closed mitosis.


Asunto(s)
Segregación Cromosómica/fisiología , Membrana Nuclear/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Proteínas de Unión a Telómeros/metabolismo , Telómero/metabolismo , Proteína Quinasa CDC2/metabolismo , Ciclo Celular/genética , Mitosis , Membrana Nuclear/genética , Fosforilación , Estructura Terciaria de Proteína , Schizosaccharomyces/metabolismo , Complejo Shelterina , Huso Acromático/genética , Huso Acromático/metabolismo
5.
J Biol Chem ; 287(1): 619-627, 2012 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-22086929

RESUMEN

The Ctc1-Stn1-Ten1 (CST) complex is an RPA (replication protein A)-like protein complex that binds to single-stranded (ss) DNA. It localizes at telomeres and is involved in telomere end protection in mammals and plants. It is also known to stimulate DNA polymerase α-primase in vitro. However, it is not known how CST accomplishes these functions in vivo. Here, we report the identification and characterization of Xenopus laevis CST complex (xCST). xCST showed ssDNA binding activity with moderate preference for G (guanine)-rich sequences. xStn1-immunodepleted Xenopus egg extracts supported chromosomal DNA replication in in vitro reconstituted sperm nuclei, suggesting that xCST is not a general replication factor. However, the immunodepletion or neutralization of xStn1 compromised DNA synthesis on ssDNA template. Because primed ssDNA template was replicated in xStn1-immunodepleted extracts as efficiently as in control ones, we conclude that xCST is involved in the priming step on ssDNA template. These results are consistent with the current model that CST is involved in telomeric C-strand synthesis through the regulation of DNA polymerase α-primase.


Asunto(s)
Replicación del ADN , ADN de Cadena Simple/biosíntesis , Óvulo/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/genética , Xenopus laevis/metabolismo , Animales , Secuencia de Bases , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cromatina/genética , Cromatina/metabolismo , Clonación Molecular , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , Secuencia Rica en GC/genética , Humanos , Masculino , Transporte de Proteínas , Espermatozoides/citología , Espermatozoides/metabolismo , Especificidad por Sustrato , Telómero/genética , Telómero/metabolismo , Proteínas de Xenopus/genética
6.
Mol Cell ; 36(2): 193-206, 2009 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-19854130

RESUMEN

Budding yeast Cdc13, Stn1, and Ten1 form the CST complex to protect telomeres from lethal DNA degradation. It remains unknown whether similar complexes are conserved in higher eukaryotes or not. Here we isolated mammalian STN1 and TEN1 homologs and CTC1 (conserved telomere maintenance component 1). The three proteins contain putative OB-fold domains and form a complex called CST, which binds to single-stranded DNA with high affinity in a sequence-independent manner. CST associates with a fraction of telomeres consistently during the cell cycle, in quiescent cells and Pot1-knockdown cells. It does not colocalize with replication foci in S phase. Significant increases in the abundance of single-stranded G-strand telomeric DNA were observed in Stn1-knockdown cells. We propose that CST is a replication protein A (RPA)-like complex that is not directly involved in conventional DNA replication at forks but plays a role in DNA metabolism frequently required by telomeres.


Asunto(s)
ADN de Cadena Simple/metabolismo , Proteína de Replicación A/metabolismo , Proteínas de Unión a Telómeros/metabolismo , Telómero/metabolismo , Animales , Secuencia de Bases , Células HeLa , Humanos , Ratones , Datos de Secuencia Molecular , Complejos Multiproteicos/metabolismo , Proteínas Mutantes/metabolismo , Unión Proteica , Multimerización de Proteína , Estructura Terciaria de Proteína , Transporte de Proteínas , Proteínas Recombinantes , Homología de Secuencia de Aminoácido , Complejo Shelterina , Proteínas de Unión a Telómeros/química
7.
Mol Cell Biol ; 29(17): 4729-41, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19546234

RESUMEN

FLASH has been shown to be required for S phase progression and to interact with a nuclear protein, ataxia-telangiectasia locus (NPAT), a component of Cajal bodies in the nucleus and an activator of histone transcription. We investigated the role of human FLASH by using an inducible FLASH knockdown system in the presence or absence of various mutant forms of mouse FLASH. While carboxyl-terminal deletion mutants of FLASH, which do not interact with NPAT, can support S phase progression, its amino-terminal deletion mutants, which are unable to self associate, cannot support S phase progression, replication-dependent histone transcription, or the formation of Cajal bodies. Furthermore, FLASH was shown to be associated with arsenite resistance protein 2 (ARS2) through its central region, which is composed of only 13 amino acids. The expression of ARS2 and the interaction between FLASH and ARS2 are required for S phase progression. Taking these results together, FLASH functions in S phase progression through interaction with ARS2.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Proteínas de Ciclo Celular/metabolismo , Ciclo Celular/fisiología , Proteínas Nucleares/metabolismo , Fase S/fisiología , Secuencia de Aminoácidos , Animales , Proteínas de Unión al Calcio/genética , Proteínas de Ciclo Celular/genética , Línea Celular , Histonas/genética , Histonas/metabolismo , Humanos , Ratones , Datos de Secuencia Molecular , Proteínas Nucleares/genética , ARN/genética , ARN/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Alineación de Secuencia , Transcripción Genética
8.
Nat Cell Biol ; 10(10): 1164-71, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18758452

RESUMEN

Dendrites allow neurons to integrate sensory or synaptic inputs, and the spatial disposition and local density of branches within the dendritic arbor limit the number and type of inputs. Drosophila melanogaster dendritic arborization (da) neurons provide a model system to study the genetic programs underlying such geometry in vivo. Here we report that mutations of motor-protein genes, including a dynein subunit gene (dlic) and kinesin heavy chain (khc), caused not only downsizing of the overall arbor, but also a marked shift of branching activity to the proximal area within the arbor. This phenotype was suppressed when dominant-negative Rab5 was expressed in the mutant neurons, which deposited early endosomes in the cell body. We also showed that 1) in dendritic branches of the wild-type neurons, Rab5-containing early endosomes were dynamically transported and 2) when Rab5 function alone was abrogated, terminal branches were almost totally deleted. These results reveal an important link between microtubule motors and endosomes in dendrite morphogenesis.


Asunto(s)
Dendritas/metabolismo , Drosophila melanogaster/metabolismo , Dineínas/metabolismo , Endosomas/metabolismo , Proteínas de Unión al GTP rab5/metabolismo , Animales , Axones/metabolismo , Transporte Biológico , Proteínas Portadoras/metabolismo , Células Clonales , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Genes de Insecto , Cinesinas/metabolismo , Morfogénesis , Mutación/genética , Fenotipo , Proteínas de Unión al GTP rab5/deficiencia
9.
Science ; 320(5881): 1341-4, 2008 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-18535244

RESUMEN

Telomeres are specialized chromatin structures that protect chromosomal ends. Protection of telomeres 1 (Pot1) binds to the telomeric G-rich overhang, thereby protecting telomeres and regulating telomerase. Mammalian POT1 and TPP1 interact and constitute part of the six-protein shelterin complex. Here we report that Tpz1, the TPP1 homolog in fission yeast, forms a complex with Pot1. Tpz1 binds to Ccq1 and the previously undiscovered protein Poz1 (Pot1-associated in Schizosaccharomyces pombe), which protect telomeres redundantly and regulate telomerase in positive and negative manners, respectively. Thus, the Pot1-Tpz1 complex accomplishes its functions by recruiting effector molecules Ccq1 and Poz1. Moreover, Poz1 bridges Pot1-Tpz1 and Taz1-Rap1, thereby connecting the single-stranded and double-stranded telomeric DNA regions. Such molecular architectures are similar to those of mammalian shelterin, indicating that the overall DNA-protein architecture is conserved across evolution.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Unión a Telómeros/metabolismo , Telómero/fisiología , Secuencia de Aminoácidos , Proteínas Portadoras/química , Proteínas Portadoras/genética , Inmunoprecipitación de Cromatina , ADN de Hongos/metabolismo , Proteínas de Unión al ADN , Inmunoprecipitación , Datos de Secuencia Molecular , Mutación , Unión Proteica , Estructura Terciaria de Proteína , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética , Complejo Shelterina , Telomerasa/metabolismo , Telómero/metabolismo , Telómero/ultraestructura , Proteínas de Unión a Telómeros/química , Proteínas de Unión a Telómeros/genética , Técnicas del Sistema de Dos Híbridos
10.
Genes Cells ; 12(6): 811-26, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17573780

RESUMEN

MRG15 is a conserved chromodomain protein that associates with histone deacetylases (HDACs) and Tip60-containing histone acetyltransferase (HAT) complexes. Here we further characterize MRG15-containing complexes and show a functional link between MRG15 and histone H3K4 demethylase activity in mammalian cells. MRG15 was predominantly localized to discrete nuclear subdomains enriched for Ser(2)-phosphorylated RNA polymerase II, suggesting it is involved specifically with active transcription. Protein analysis of the MRG15-containing complexes led to the identification of RBP2, a JmjC domain-containing protein. Remarkably, over-expression of RBP2 greatly reduced the H3K4 methylation in culture human cells in vivo, and recombinant RBP2 efficiently removed H3K4 methylation of histone tails in vitro. Knockdown of RBP2 resulted in increased H3K4 methylation levels within transcribed regions of active genes. Our findings demonstrate that RBP2 associated with MRG15 complex to maintain reduced H3K4 methylation at transcribed regions, which may ensure the transcriptional elongation state.


Asunto(s)
Regulación hacia Abajo , N-Metiltransferasa de Histona-Lisina/fisiología , Histonas/química , Lisina/química , Proteínas de Unión al Retinol/fisiología , Factores de Transcripción/fisiología , Línea Celular , Regulación Fúngica de la Expresión Génica , N-Metiltransferasa de Histona-Lisina/química , Humanos , Metilación , Modelos Biológicos , Modelos Genéticos , Fosforilación , Proteínas de Unión al Retinol/química , Proteínas Celulares de Unión al Retinol , Saccharomyces cerevisiae/metabolismo , Serina/química , Factores de Transcripción/química , Transcripción Genética
11.
J Cell Biol ; 175(6): 869-80, 2006 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-17158953

RESUMEN

Cellular senescence is a tumor-suppressing mechanism that is accompanied by characteristic chromatin condensation called senescence-associated heterochromatic foci (SAHFs). We found that individual SAHFs originate from individual chromosomes. SAHFs do not show alterations of posttranslational modifications of core histones that mark condensed chromatin in mitotic chromosomes, apoptotic chromatin, or transcriptionally inactive heterochromatin. Remarkably, SAHF-positive senescent cells lose linker histone H1 and exhibit increased levels of chromatin-bound high mobility group A2 (HMGA2). The expression of N-terminally enhanced green fluorescent protein (EGFP)-tagged histone H1 induces premature senescence phenotypes, including increased levels of phosphorylated p53, p21, and hypophosphorylated Rb, and a decrease in the chromatin-bound endogenous histone H1 level but not in p16 level accumulation or SAHF formation. However, the simultaneous ectopic expression of hemagglutinin-tagged HMGA2 and N-terminally EGFP-tagged histone H1 leads to significant SAHF formation (P < 0.001). It is known that histone H1 and HMG proteins compete for a common binding site, the linker DNA. These results suggest that SAHFs are a novel type of chromatin condensation involving alterations in linker DNA-binding proteins.


Asunto(s)
Núcleo Celular/metabolismo , Senescencia Celular/genética , Heterocromatina/fisiología , Histonas/genética , Bromodesoxiuridina , Ciclo Celular , Núcleo Celular/genética , Células Cultivadas , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Proteína HMGA2/genética , Proteína HMGA2/metabolismo , Histonas/antagonistas & inhibidores , Histonas/metabolismo , Humanos , Hibridación Fluorescente in Situ , Nucleosomas/metabolismo , Fosforilación , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteína de Retinoblastoma/genética , Proteína de Retinoblastoma/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Espectrometría de Masa por Ionización de Electrospray , Fracciones Subcelulares , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
12.
EMBO J ; 25(3): 575-84, 2006 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-16424898

RESUMEN

Telomeres are regulated by a homeostatic mechanism that includes telomerase and telomeric repeat binding proteins, TRF1 and TRF2. Recently, it has been hypothesized that telomeres assume distinct configurations in a cell-cycle-dependent manner, although direct biochemical evidence is lacking. Here we demonstrated that Xenopus TRF1 (xTRF1) associates with telomere chromatin specifically in mitotic Xenopus egg extracts, and dissociates from it upon mitotic exit. Both the N-terminal TRF-homology (TRFH) domain and the linker region connecting the TRFH domain and the C-terminal Myb domain are required for this cell-cycle-dependent association of xTRF1 with chromatin. In contrast, Xenopus TRF2 (xTRF2) associates with chromatin throughout the cell cycle. We showed that Polo-like kinase (Plx1) phosphorylates xTRF1 in vitro. Moreover, the mitotic xTRF1-chromatin association was significantly impaired when Plx1 was immunodepleted from the extracts. Finally, high telomerase activities were detected in association with replicating interphase chromatin compared with mitotic chromatin. These results indicate that telomere chromatin is actively regulated by cell-cycle-dependent processes, and provide an insight for understanding how telomeres undergo DNA metabolisms during the cell cycle.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Ciclo Celular , Cromatina/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Telómero/metabolismo , Proteína 1 de Unión a Repeticiones Teloméricas/metabolismo , Proteínas de Xenopus/metabolismo , Animales , Proteína Quinasa CDC2/metabolismo , Técnicas In Vitro , Mitosis , Óvulo/metabolismo , Fosforilación , Unión Proteica , Estructura Terciaria de Proteína , Telomerasa/metabolismo , Proteína 2 de Unión a Repeticiones Teloméricas/metabolismo , Xenopus laevis , Quinasa Tipo Polo 1
13.
J Biol Chem ; 280(7): 5307-17, 2005 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-15557334

RESUMEN

Oct-3/4 is a key transcriptional factor whose expression level governs the fate of primitive inner cell mass and embryonic stem (ES) cells. Previously, an upstream 3.3-kb distal enhancer (DE) fragment was identified to be responsible for the specific expression of mouse Oct-3/4 in the inner cell mass and ES cells. However, little is known about the cis-elements and trans-factors required for DE activity. In this study, we identified a novel cis-element, called Site 2B here, located approximately 30 bp downstream from Site 2A, which was previously revealed in DE by an in vivo chemical modification experiment. Using the luciferase reporter assay, we demonstrated that both Site 2A and Site 2B are necessary and sufficient for activating DE in the contexts of both the native Oct-3/4 promoter and the heterologous thymidine kinase minimal promoter. In an electrophoretic mobility shift assay we showed that Site 2B specifically binds to Oct-3/4 and Sox2 when ES-derived cell extracts were used, whereas Site 2A binds to a factor(s) present in both ES and NIH 3T3 cells. Furthermore, we showed that the physiological level of Oct-3/4 in ES cells is required for Site 2B-mediated DE activity using the inducible knock-out system of Oct-3/4 in ES cells. These results indicate that Oct-3/4 is a member of the gene family regulated by Oct-3/4 and Sox2, as reported before for the FGF-4, UTF1, Sox2, and Fbx15 genes. Thus, Oct-3/4 and Sox2 comprise a regulatory complex that controls the expression of genes important for the maintenance of the primitive state, including themselves. This autoregulatory circuit of the Sox2.Oct-3/4 complex may contribute to maintaining robustly the precise expression level of Oct-3/4 in primitive cells.


Asunto(s)
Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Embrión de Mamíferos/citología , Regulación del Desarrollo de la Expresión Génica , Células Madre/metabolismo , Transactivadores/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Animales , Secuencia de Bases , Diferenciación Celular/efectos de los fármacos , Línea Celular , Regulación hacia Abajo/efectos de los fármacos , Elementos de Facilitación Genéticos/genética , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Humanos , Ratones , Datos de Secuencia Molecular , Mutación/genética , Células 3T3 NIH , Factor 3 de Transcripción de Unión a Octámeros , Regiones Promotoras Genéticas/genética , Elementos de Respuesta/genética , Factores de Transcripción SOXB1 , Células Madre/citología , Tretinoina/farmacología
14.
J Biol Chem ; 277(50): 48714-23, 2002 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-12354758

RESUMEN

MBD3, a component of the histone deacetylase NuRD complex, contains the methyl-CpG-binding domain (MBD), yet does not possess appreciable mCpG-specific binding activity. The functional significance of MBD3 in the NuRD complex remains enigmatic, partly because of the limited availability of biochemical approaches, such as immunoprecipitation, to analyze MBD3. In this study, we stably expressed the FLAG-tagged version of MBD3 in HeLa cells. We found that MBD3-FLAG was incorporated into the NuRD complex, and the MBD3-FLAG-containing NuRD complex was efficiently immunoprecipitated by anti-FLAG antibodies. By exploiting this system, we found that MBD3 is phosphorylated in vivo in the late G(2) and early M phases. Moreover, we found that Aurora-A, a serine/threonine kinase active specifically in the late G(2) and early M phases, phosphorylates MBD3 in vitro, physically associates with MBD3 in vivo, and co-localizes with MBD3 at the centrosomes in the early M phase. Interestingly, HDAC1 is distributed at the centrosomes in a manner similar to MBD3. These results suggest the highly dynamic nature of the temporal and spatial distributions, as well as the biochemical modification, of the NuRD complex in M phase, probably through an interaction with kinases, including Aurora-A. These observations will contribute significantly to the elucidation of the yet-uncharacterized cell cycle-controlled functions of the NuRD complex.


Asunto(s)
Centrosoma/metabolismo , Proteínas de Unión al ADN/metabolismo , Histona Desacetilasas/metabolismo , Mitosis , Proteínas Quinasas/metabolismo , Aurora Quinasas , Proteínas de Ciclo Celular , Centrosoma/enzimología , Fase G2 , Células HeLa , Histona Desacetilasa 1 , Humanos , Fosforilación , Pruebas de Precipitina , Proteínas Serina-Treonina Quinasas , Proteínas de Xenopus
15.
J Biol Chem ; 277(38): 35434-9, 2002 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-12124384

RESUMEN

Although mammalian MBD3 contains the mCpG-binding domain (MBD) and is highly homologous with the authentic mCpG-binding protein MBD2, it was reported that the protein does not bind to mCpG specifically. Using recombinant human wild type and mutant MBD3 proteins, we demonstrated that atypical amino acids found in MBD3 MBD, namely, His-30 and Phe-34, are responsible for the inability of MBD3 to bind to mCpG. Interestingly, although H30K/F34Y MBD3 mutant protein binds to mCpG efficiently in vitro, it was not localized at the mCpG-rich pericentromeric regions in mouse cells. We also showed that Y34F MBD2b MBD, which possesses not the mCpG-specific DNA-binding activity but the nonspecific DNA-binding activity, was localized at the pericentromeric regions. These results suggested that the mCpG-specific DNA-binding activity is largely dispensable, and another factor(s) is required for the localization of MBD proteins in vivo. MBD3 was identified as a component of the NuRD/Mi2 complex that shows chromatin remodeling and histone deacetylase activities. We demonstrated that MBD3 MBD is necessary and sufficient for binding to HDAC1 and MTA2, two components of the NuRD/Mi2 complex. It was therefore suggested that mCpG-binding-defective MBD3 has evolutionarily conserved its MBD because of the secondary role played by the MBD in protein-protein interactions.


Asunto(s)
Proteínas Portadoras/metabolismo , Islas de CpG , Proteínas de Unión al ADN/metabolismo , Histona Desacetilasas/metabolismo , Proteínas Represoras , Secuencia de Aminoácidos , Disparidad de Par Base , Secuencia de Bases , Sitios de Unión , Cartilla de ADN , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Histona Desacetilasa 1 , Humanos , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Factores de Transcripción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA