Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 9 de 9
1.
Pharmacol Ther ; 249: 108505, 2023 09.
Article En | MEDLINE | ID: mdl-37541595

Benzodiazepine, a classical medication utilized in the treatment of insomnia, operates by augmenting the activity of the GABAA receptor. This underscores the significance of GABAergic neurotransmission in both the initiation and maintenance of sleep. Nevertheless, an increasing body of evidence substantiates the notion that GABA-mediated neurotransmission also assumes a vital role in promoting wakefulness in specific neuronal circuits. Despite the longstanding belief in the pivotal function of GABA in regulating the sleep-wake cycle, there exists a dearth of comprehensive documentation regarding the specific regions within the central nervous system where GABAergic neurons are crucial for these functions. In this review, we delve into the involvement of GABAergic neurons in the regulation of sleep-wake cycles, with particular focus on those located in the preoptic area (POA) and ventral tegmental area (VTA). Recent research, including our own, has further underscored the importance of GABAergic neurotransmission in these areas for the regulation of sleep-wake cycles.


Sleep , Wakefulness , Humans , GABAergic Neurons , Central Nervous System , Receptors, GABA-A , gamma-Aminobutyric Acid
2.
J Neurosci ; 43(22): 4075-4092, 2023 05 31.
Article En | MEDLINE | ID: mdl-37117013

To understand how sleep-wakefulness cycles are regulated, it is essential to disentangle structural and functional relationships between the preoptic area (POA) and lateral hypothalamic area (LHA), since these regions play important yet opposing roles in the sleep-wakefulness regulation. GABA- and galanin (GAL)-producing neurons in the ventrolateral preoptic nucleus (VLPO) of the POA (VLPOGABA and VLPOGAL neurons) are responsible for the maintenance of sleep, while the LHA contains orexin-producing neurons (orexin neurons) that are crucial for maintenance of wakefulness. Through the use of rabies virus-mediated neural tracing combined with in situ hybridization (ISH) in male and female orexin-iCre mice, we revealed that the vesicular GABA transporter (Vgat, Slc32a1)- and galanin (Gal)-expressing neurons in the VLPO directly synapse with orexin neurons in the LHA. A majority (56.3 ± 8.1%) of all VLPO input neurons connecting to orexin neurons were double-positive for Vgat and Gal Using projection-specific rabies virus-mediated tracing in male and female Vgat-ires-Cre and Gal-Cre mice, we discovered that VLPOGABA and VLPOGAL neurons that send projections to the LHA received innervations from similarly distributed input neurons in many brain regions, with the POA and LHA being among the main upstream areas. Additionally, we found that acute optogenetic excitation of axons of VLPOGABA neurons, but not VLPOGAL neurons, in the LHA of male Vgat-ires-Cre mice induced wakefulness. This study deciphers the connectivity between the VLPO and LHA, provides a large-scale map of upstream neuronal populations of VLPO→LHA neurons, and reveals a previously uncovered function of the VLPOGABA→LHA pathway in the regulation of sleep and wakefulness.SIGNIFICANCE STATEMENT We identified neurons in the ventrolateral preoptic nucleus (VLPO) that are positive for vesicular GABA transporter (Vgat) and/or galanin (Gal) and serve as presynaptic partners of orexin-producing neurons in the lateral hypothalamic area (LHA). We depicted monosynaptic input neurons of GABA- and galanin-producing neurons in the VLPO that send projections to the LHA throughout the entire brain. Their input neurons largely overlap, suggesting that they comprise a common neuronal population. However, acute excitatory optogenetic manipulation of the VLPOGABA→LHA pathway, but not the VLPOGAL→LHA pathway, evoked wakefulness. This study shows the connectivity of major components of the sleep/wake circuitry in the hypothalamus and unveils a previously unrecognized function of the VLPOGABA→LHA pathway in sleep-wakefulness regulation. Furthermore, we suggest the existence of subpopulations of VLPOGABA neurons that innervate LHA.


Hypothalamic Area, Lateral , Preoptic Area , Mice , Male , Female , Animals , Preoptic Area/physiology , Hypothalamic Area, Lateral/physiology , Orexins/metabolism , Galanin/metabolism , Neurons/physiology , Wakefulness/physiology , Sleep/physiology , gamma-Aminobutyric Acid/metabolism
3.
Front Neurol Neurosci ; 45: 11-21, 2021.
Article En | MEDLINE | ID: mdl-34052806

Orexins have received a lot of attention as potent endogenous arousal-promoting peptides, and orexin receptor antagonists have shown clinical efficacy for the treatment of insomnia. Orexin neurons are thought to act primarily on monoaminergic neurons to maintain arousal and vigilance. In this chapter, we discuss the functional interaction between monoaminergic systems, including noradrenaline, serotonin and histamine, and orexin neurons, as well as interactions between the acetylcholine system and the orexin neurons, focusing, in particular, on their function in the regulation of sleep-wakefulness states. Orexin also has close interactions with the dopaminergic system, and many studies have suggested roles of orexin signaling in the reward system and roles for orexins in drug addiction.


Acetylcholine/metabolism , Biogenic Monoamines/metabolism , Brain/metabolism , Neurons/metabolism , Orexin Receptors/metabolism , Orexins/metabolism , Animals , Humans
4.
J Neurosci ; 41(7): 1582-1596, 2021 02 17.
Article En | MEDLINE | ID: mdl-33372061

During rapid eye movement (REM) sleep, anti-gravity muscle tone and bodily movements are mostly absent, because somatic motoneurons are inhibited by descending inhibitory pathways. Recent studies showed that glycine/GABA neurons in the ventromedial medulla (VMM; GlyVMM neurons) play an important role in generating muscle atonia during REM sleep (REM-atonia). However, how these REM-atonia-inducing neurons interconnect with other neuronal populations has been unknown. In the present study, we first identified a specific subpopulation of GlyVMM neurons that play an important role in induction of REM-atonia by virus vector-mediated tracing in male mice in which glycinergic neurons expressed Cre recombinase. We found these neurons receive direct synaptic input from neurons in several brain stem regions, including glutamatergic neurons in the sublaterodorsal tegmental nucleus (SLD; GluSLD neurons). Silencing this circuit by specifically expressing tetanus toxin light chain (TeTNLC) resulted in REM sleep without atonia. This manipulation also caused a marked decrease in time spent in cataplexy-like episodes (CLEs) when applied to narcoleptic orexin-ataxin-3 mice. We also showed that GlyVMM neurons play an important role in maintenance of sleep. This present study identified a population of glycinergic neurons in the VMM that are commonly involved in REM-atonia and cataplexy.SIGNIFICANCE STATEMENT We identified a population of glycinergic neurons in the ventral medulla that plays an important role in inducing muscle atonia during rapid eye movement (REM) sleep. It sends axonal projections almost exclusively to motoneurons in the spinal cord and brain stem except to those that innervate extraocular muscles, while other glycinergic neurons in the same region also send projections to other regions including monoaminergic nuclei. Furthermore, these neurons receive direct inputs from several brainstem regions including glutamatergic neurons in the sublaterodorsal tegmental nucleus (SLD). Genetic silencing of this pathway resulted in REM sleep without atonia and a decrease of cataplexy when applied to narcoleptic mice. This work identified a neural population involved in generating muscle atonia during REM sleep and cataplexy.


Cataplexy/physiopathology , Glycine/physiology , Medulla Oblongata/physiology , Muscle, Skeletal/physiology , Neurons/physiology , Sleep, REM/physiology , Animals , Ataxin-3/genetics , Axons/physiology , Cataplexy/genetics , Electroencephalography , Male , Medulla Oblongata/physiopathology , Mice , Mice, Inbred C57BL , Muscle Tonus/physiology , Muscle, Skeletal/physiopathology , Narcolepsy/genetics , Narcolepsy/physiopathology , Orexins/genetics , Tetanus Toxin/pharmacology
5.
Front Neurosci ; 12: 892, 2018.
Article En | MEDLINE | ID: mdl-30555297

Neurons expressing neuropeptide orexins (hypocretins) in the lateral hypothalamus (LH) and serotonergic neurons in the dorsal raphe nucleus (DR) both play important roles in the regulation of sleep/wakefulness states, and show similar firing patterns across sleep/wakefulness states. Orexin neurons send excitatory projections to serotonergic neurons in the DR, which express both subtypes of orexin receptors (Mieda et al., 2011), while serotonin (5-HT) potently inhibits orexin neurons through activation of 5HT1A receptors (5HT1ARs). In this study, we examined the physiological importance of serotonergic inhibitory regulation of orexin neurons by studying the phenotypes of mice lacking the 5HT1A receptor gene (Htr1a) specifically in orexin neurons (ox5HT1ARKO mice). ox5HT1ARKO mice exhibited longer NREM sleep time along with decreased wakefulness time in the later phase of the dark period. We also found that restraint stress induced a larger impact on REM sleep architecture in ox5HT1ARKO mice than in controls, with a larger delayed increase in REM sleep amount as compared with that in controls, indicating abnormality of REM sleep homeostasis in the mutants. These results suggest that 5HT1ARs in orexin neurons are essential in the regulation of sleep/wakefulness states, and that serotonergic regulation of orexin neurons plays a crucial role in the appropriate control of orexinergic tone to maintain normal sleep/wake architecture.

6.
J Neurosci ; 38(28): 6366-6378, 2018 07 11.
Article En | MEDLINE | ID: mdl-29915137

The hypothalamus plays an important role in the regulation of sleep/wakefulness states. While the ventrolateral preoptic nucleus (VLPO) plays a critical role in the initiation and maintenance of sleep, the lateral posterior part of the hypothalamus contains neuronal populations implicated in maintenance of arousal, including orexin-producing neurons (orexin neurons) in the lateral hypothalamic area (LHA) and histaminergic neurons in the tuberomammillary nucleus (TMN). During a search for neurons that make direct synaptic contact with histidine decarboxylase-positive (HDC+), histaminergic neurons (HDC neurons) in the TMN and orexin neurons in the LHA of male mice, we found that these arousal-related neurons are heavily innervated by GABAergic neurons in the preoptic area including the VLPO. We further characterized GABAergic neurons electrophysiologically in the VLPO (GABAVLPO neurons) that make direct synaptic contact with these hypothalamic arousal-related neurons. These neurons (GABAVLPO→HDC or GABAVLPO→orexin neurons) were both potently inhibited by noradrenaline and serotonin, showing typical electrophysiological characteristics of sleep-promoting neurons in the VLPO. This work provides direct evidence of monosynaptic connectivity between GABAVLPO neurons and hypothalamic arousal neurons and identifies the effects of monoamines on these neuronal pathways.SIGNIFICANCE STATEMENT Rabies-virus-mediated tracing of input neurons of two hypothalamic arousal-related neuron populations, histaminergic and orexinergic neurons, showed that they receive similar distributions of input neurons in a variety of brain areas, with rich innervation by GABAergic neurons in the preoptic area, including the ventrolateral preoptic area (VLPO), a region known to play an important role in the initiation and maintenance of sleep. Electrophysiological experiments found that GABAergic neurons in the VLPO (GABAVLPO neurons) that make direct input to orexin or histaminergic neurons are potently inhibited by noradrenaline and serotonin, suggesting that these monoamines disinhibit histamine and orexin neurons. This work demonstrated functional and structural interactions between GABAVLPO neurons and hypothalamic arousal-related neurons.


Arousal/physiology , GABAergic Neurons/physiology , Hypothalamic Area, Lateral/physiology , Preoptic Area/physiology , Sleep/physiology , Animals , GABAergic Neurons/cytology , Hypothalamic Area, Lateral/cytology , Male , Mice , Mice, Transgenic , Neural Pathways/cytology , Neural Pathways/metabolism , Norepinephrine/metabolism , Preoptic Area/cytology , Serotonin/metabolism
7.
Mol Brain ; 8: 50, 2015 Aug 20.
Article En | MEDLINE | ID: mdl-26289589

BACKGROUND: Many genetic and environmental factors are involved in the etiology of nicotine dependence. Although several candidate gene variations have been reported by candidate gene studies or genome-wide association studies (GWASs) to be associated with smoking behavior and the vulnerability to nicotine dependence, such studies have been mostly conducted with subjects with European ancestry. However, genetic factors have rarely been investigated for the Japanese population as GWASs. To elucidate genetic factors involved in nicotine dependence in Japanese, the present study comprehensively explored genetic contributors to nicotine dependence by using whole-genome genotyping arrays with more than 200,000 markers in Japanese subjects. RESULTS: The subjects for the GWAS and replication study were 148 and 374 patients, respectively. A two-stage GWAS was conducted using the Fagerström Test for Nicotine Dependence (FTND), Tobacco Dependence Screener (TDS), and number of cigarettes smoked per day (CPD) as indices of nicotine dependence. For the additional association analyses, patients who underwent major abdominal surgery, patients with methamphetamine dependence/psychosis, and healthy subjects with schizotypal personality trait data were recruited. Autopsy specimens with various diseases were also evaluated. After the study of associations between more than 200,000 marker single-nucleotide polymorphisms (SNPs) and the FTND, TDS, and CPD, the nonsynonymous rs2653349 SNP (located on the gene that encodes orexin [hypocretin] receptor 2) was selected as the most notable SNP associated with FTND, with a p value of 0.0005921 in the two-stage GWAS. This possible association was replicated for the remaining 374 samples. This SNP was also associated with postoperative pain, the initiation of methamphetamine use, schizotypal personality traits, and susceptibility to goiter. CONCLUSIONS: Although the p value did not reach a conventional genome-wide level of significance in our two-stage GWAS, we obtained significant results in the subsequent analyses that suggest that the rs2653349 SNP (Val308Ile) could be a genetic factor that is related to nicotine dependence and possibly pain, schizotypal personality traits, and goiter in the Japanese population.


Genetic Predisposition to Disease , Genome-Wide Association Study , Orexin Receptors/genetics , Polymorphism, Single Nucleotide/genetics , Tobacco Use Disorder/genetics , Abdomen/surgery , Adolescent , Adult , Aged , Aged, 80 and over , Asian People/genetics , Autopsy , Female , Genetic Loci , Goiter/genetics , Humans , Male , Methamphetamine , Middle Aged , Pain, Postoperative/etiology , Pain, Postoperative/genetics , Physical Chromosome Mapping , Reproducibility of Results , Schizotypal Personality Disorder/genetics , Young Adult
8.
Front Neurosci ; 8: 8, 2014.
Article En | MEDLINE | ID: mdl-24550770

Orexins (also known as hypocretins) play critical roles in the regulation of sleep/wakefulness states by activating two G-protein coupled receptors (GPCRs), orexin 1 (OX1R) and orexin 2 receptors (OX2R). In order to understand the differential contribution of both receptors in regulating sleep/wakefulness states we compared the pharmacological effects of a newly developed OX2R antagonist (2-SORA), Compound 1 m (C1 m), with those of a dual orexin receptor antagonist (DORA), suvorexant, in C57BL/6J mice. After oral administration in the dark period, both C1m and suvorexant decreased wakefulness time with similar efficacy in a dose-dependent manner. While C1m primarily increased total non-rapid eye movement (NREM) sleep time without affecting episode durations and with minimal effects on REM sleep, suvorexant increased both total NREM and REM sleep time and episode durations with predominant effects on REM sleep. Fos-immunostaining showed that both compounds affected the activities of arousal-related neurons with different patterns. The number of Fos-IR noradrenergic neurons in the locus coeruleus was lower in the suvorexant group as compared with the control and C1m-treated groups. In contrast, the numbers of Fos-IR neurons in histaminergic neurons in the tuberomamillary nucleus and serotonergic neurons in the dorsal raphe were reduced to a similar extent in the suvorexant and C1m groups as compared with the vehicle-treated group. Together, these results suggest that an orexin-mediated suppression of REM sleep via potential activation of OX1Rs in the locus coeruleus may possibly contribute to the differential effects on sleep/wakefulness exerted by a DORA as compared to a 2-SORA.

9.
Front Neural Circuits ; 7: 192, 2013.
Article En | MEDLINE | ID: mdl-24348342

Populations of neurons in the hypothalamic preoptic area (POA) fire rapidly during sleep, exhibiting sleep/waking state-dependent firing patterns that are the reciprocal of those observed in the arousal system. The majority of these preoptic "sleep-active" neurons contain the inhibitory neurotransmitter GABA. On the other hand, a population of neurons in the lateral hypothalamic area (LHA) contains orexins, which play an important role in the maintenance of wakefulness, and exhibit an excitatory influence on arousal-related neurons. It is important to know the anatomical and functional interactions between the POA sleep-active neurons and orexin neurons, both of which play important, but opposite roles in regulation of sleep/wakefulness states. In this study, we confirmed that specific pharmacogenetic stimulation of GABAergic neurons in the POA leads to an increase in the amount of non-rapid eye movement (NREM) sleep. We next examined direct connectivity between POA GABAergic neurons and orexin neurons using channelrhodopsin 2 (ChR2) as an anterograde tracer as well as an optogenetic tool. We expressed ChR2-eYFP selectively in GABAergic neurons in the POA by AAV-mediated gene transfer, and examined the projection sites of ChR2-eYFP-expressing axons, and the effect of optogenetic stimulation of ChR2-eYFP on the activity of orexin neurons. We found that these neurons send widespread projections to wakefulness-related areas in the hypothalamus and brain stem, including the LHA where these fibers make close appositions to orexin neurons. Optogenetic stimulation of these fibers resulted in rapid inhibition of orexin neurons. These observations suggest direct connectivity between POA GABAergic neurons and orexin neurons.


GABAergic Neurons/physiology , Intracellular Signaling Peptides and Proteins/metabolism , Neural Inhibition/physiology , Neurons/physiology , Neuropeptides/metabolism , Preoptic Area/physiology , Animals , Arousal/physiology , Mice , Mice, Transgenic , Neural Pathways/physiology , Neurons/metabolism , Orexins , Preoptic Area/metabolism , Sleep/physiology
...