Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 21
1.
Vet Res ; 54(1): 82, 2023 Sep 27.
Article En | MEDLINE | ID: mdl-37759311

Immune checkpoint molecules PD-1/PD-L1 cause T-cell exhaustion and contribute to disease progression in chronic infections of cattle. We established monoclonal antibodies (mAbs) that specifically inhibit the binding of bovine PD-1/PD-L1; however, conventional anti-PD-1 mAbs are not suitable as therapeutic agents because of their low binding affinity to antigen. In addition, their sensitivity for the detection of bovine PD-1 is low and their use for immunostaining PD-1 is limited. To address these issues, we established two anti-bovine PD-1 rabbit mAbs (1F10F1 and 4F5F2) and its chimeric form using bovine IgG1 (Boch1D10F1), which exhibit high binding affinity. One of the rabbit mAb 1D10F1 binds more strongly to bovine PD-1 compared with a conventional anti-PD-1 mAb (5D2) and exhibits marked inhibitory activity on the PD-1/PD-L1 interaction. In addition, PD-1 expression in bovine T cells could be detected with higher sensitivity by flow cytometry using 1D10F1. Furthermore, we established higher-producing cells of Boch1D10F1 and succeeded in the mass production of Boch1D10F1. Boch1D10F1 exhibited a similar binding affinity to bovine PD-1 and the inhibitory activity on PD-1/PD-L1 binding compared with 1D10F1. The immune activation by Boch1D10F1 was also confirmed by the enhancement of IFN-γ production. Finally, Boch1D10F1 was administered to bovine leukemia virus-infected cows to determine its antiviral effect. In conclusion, the high-affinity anti-PD-1 antibody developed in this study represents a powerful tool for detecting and inhibiting bovine PD-1 and is a candidate for PD-1-targeted immunotherapy in cattle.


B7-H1 Antigen , Interferon-gamma , Female , Cattle , Rabbits , Animals , Programmed Cell Death 1 Receptor/metabolism , Antiviral Agents , Antibodies, Monoclonal
2.
Vaccines (Basel) ; 11(3)2023 Mar 01.
Article En | MEDLINE | ID: mdl-36992143

Interactions between programmed death 1 (PD-1) and PD-ligand 1 (PD-L1) cause functional exhaustion of T cells by inducing inhibitory signals, thereby attenuating effector functions of T cells. We have developed an anti-bovine PD-L1 blocking antibody (Ab) and have demonstrated that blockade of the interaction between PD-1 and PD-L1 reactivates T-cell responses in cattle. In the present study, we examined the potential utility of PD-1/PD-L1-targeted immunotherapy in enhancing T-cell responses to vaccination. Calves were inoculated with a hexavalent live-attenuated viral vaccine against bovine respiratory infections in combination with treatment with an anti-PD-L1 Ab. The expression kinetics of PD-1 in T cells and T-cell responses to viral antigens were measured before and after vaccination to evaluate the adjuvant effect of anti-PD-L1 Ab. PD-1 expression was upregulated in vaccinated calves after the administration of a booster vaccination. The activation status of CD4+, CD8+, and γδTCR+ T cells was enhanced by the combination of vaccination and PD-L1 blockade. In addition, IFN-γ responses to viral antigens were increased following combinatorial vaccination with PD-L1 blockade. In conclusion, the blockade of the PD-1/PD-L1 interaction enhances T-cell responses induced by vaccination in cattle, indicating the potential utility of anti-PD-L1 Ab in improving the efficacy of current vaccination programs.

3.
J Virol ; 97(1): e0143022, 2023 01 31.
Article En | MEDLINE | ID: mdl-36598199

Bovine leukemia virus (BLV) is a retrovirus that causes enzootic bovine leukosis (EBL) in cattle and is widespread in many countries, including Japan. Recent studies have revealed that the expression of immunoinhibitory molecules, such as programmed death-1 (PD-1) and PD-ligand 1, plays a critical role in immunosuppression and disease progression during BLV infection. In addition, a preliminary study has suggested that another immunoinhibitory molecule, T-cell immunoglobulin domain and mucin domain-3 (TIM-3), is involved in immunosuppression during BLV infection. Therefore, this study was designed to further elucidate the immunoinhibitory role of immune checkpoint molecules in BLV infection. TIM-3 expression was upregulated on peripheral CD4+ and CD8+ T cells in BLV-infected cattle. Interestingly, in EBL cattle, CD4+ and CD8+ T cells infiltrating lymphomas expressed TIM-3. TIM-3 and PD-1 were upregulated and coexpressed in peripheral CD4+ and CD8+ T cells from BLV-infected cattle. Blockade by anti-bovine TIM-3 monoclonal antibody increased CD69 expression on T cells and gamma interferon (IFN-γ) production from peripheral blood mononuclear cells from BLV-infected cattle. A syncytium formation assay also demonstrated the antiviral effects of TIM-3 blockade against BLV infection. The combined inhibition of TIM-3 and PD-1 pathways significantly enhanced IFN-γ production and antiviral efficacy compared to inhibition alone. In conclusion, the combined blockade of TIM-3 and PD-1 pathways shows strong immune activation and antiviral effects and has potential as a novel therapeutic method for BLV infection. IMPORTANCE Enzootic bovine leukosis caused by bovine leukemia virus (BLV) is an important viral disease in cattle, causing severe economic losses to the cattle industry worldwide. The molecular mechanisms of BLV-host interactions are complex. Previously, it was found that immune checkpoint molecules, such as PD-1, suppress BLV-specific Th1 responses as the disease progresses. To date, most studies have focused only on how PD-1 facilitates escape from host immunity in BLV-infected cattle and the antiviral effects of the PD-1 blockade. In contrast, how T-cell immunoglobulin domain and mucin domain-3 (TIM-3), another immune checkpoint molecule, regulates anti-BLV immune responses is rarely reported. It is also unclear why PD-1 inhibition alone was insufficient to exert anti-BLV effects in previous clinical studies. In this study, the expression profile of TIM-3 in T cells derived from BLV-infected cattle suggested that TIM-3 upregulation is a cause of immunosuppression in infected cattle. Based on these results, anti-TIM-3 antibody was used to experimentally evaluate its function in influencing immunity against BLV. Results indicated that TIM-3 upregulation induced by BLV infection suppressed T-cell activation and antiviral cytokine production. Some T cells coexpressed PD-1 and TIM-3, indicating that simultaneous inhibition of PD-1 and TIM-3 with their respective antibodies synergistically restored antiviral immunity. This study could open new avenues for treating bovine chronic infections.


Enzootic Bovine Leukosis , Immune Checkpoint Proteins , Leukemia Virus, Bovine , Animals , Cattle , CD8-Positive T-Lymphocytes/immunology , Enzootic Bovine Leukosis/immunology , Immune Checkpoint Proteins/immunology , Interferon-gamma/immunology , Leukemia Virus, Bovine/immunology , Mucins/immunology , Programmed Cell Death 1 Receptor/immunology , Gene Expression Regulation/immunology
4.
J Clin Invest ; 133(2)2023 01 17.
Article En | MEDLINE | ID: mdl-36378537

T cell exhaustion is a state of T cell dysfunction associated with expression of programmed death 1 (PD-1). Exhausted CD8+ T cells are maintained by self-renewing stem-like T cells that provide differentiated TIM3+ cells, a part of which possesses effector-like properties. PD-1-targeted therapies enhance T cell response by promoting differentiation of stem-like T cells toward TIM3+ cells, but the role of mTOR during T cell exhaustion remains elusive. Here, we showed that mTOR inhibition has distinct outcomes during the beginning of and after the establishment of chronic viral infection. Blocking mTOR during the T cell expansion phase enhanced the T cell response by causing accumulation of stem-like T cells, leading to improved efficacy of PD-1 immunotherapy; whereas, after exhaustion progressed, mTOR inhibition caused immunosuppression, characterized by decreased TIM3+ cells and increased viral load with minimal changes in stem-like T cells. Mechanistically, a cell-intrinsic mTOR signal was vital for differentiation of stem-like T cells into the TIM3+ state in the early and late phases of chronic infection as well as during PD-1 immunotherapy. Thus, PD-1 blockade worked after cessation of mTOR inhibition, but simultaneous treatment failed to induce functional TIM3+ cells, reducing efficacy of PD-1 immunotherapy. Our data demonstrate that mTOR regulates T cell exhaustion and have important implications for combination cancer therapies with PD-1 blockade.


Programmed Cell Death 1 Receptor , Virus Diseases , CD8-Positive T-Lymphocytes/metabolism , Hepatitis A Virus Cellular Receptor 2/genetics , Hepatitis A Virus Cellular Receptor 2/metabolism , Immunotherapy , Persistent Infection , Programmed Cell Death 1 Receptor/genetics , Programmed Cell Death 1 Receptor/metabolism , T-Cell Exhaustion , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Virus Diseases/metabolism
5.
Infect Immun ; 90(10): e0021022, 2022 10 20.
Article En | MEDLINE | ID: mdl-36102658

Paratuberculosis is a chronic enteritis of ruminants caused by the facultative intracellular pathogen Mycobacterium avium subsp. paratuberculosis. The Th1 response inhibits the proliferation of M. avium subsp. paratuberculosis during the early subclinical stage. However, we have previously shown that immune inhibitory molecules, such as prostaglandin E2 (PGE2), suppress M. avium subsp. paratuberculosis-specific Th1 responses as the disease progresses. To date, the mechanism underlying immunosuppression during M. avium subsp. paratuberculosis infection has not been elucidated. Therefore, in the present study, we investigated the function of cytotoxic T-lymphocyte antigen 4 (CTLA-4) expressed by peripheral blood mononuclear cells (PBMCs) from cattle with paratuberculosis because CTLA-4 expression is known to be elevated in T cells under an M. avium subsp. paratuberculosis experimental infection. M. avium subsp. paratuberculosis antigen induced CTLA-4 expression in T cells from cattle experimentally infected with M. avium subsp. paratuberculosis. Interestingly, both PGE2 and an E prostanoid 4 agonist also induced CTLA-4 expression in T cells. In addition, a functional assay with a bovine CTLA-4-immunogobulin fusion protein (CTLA-4-Ig) indicated that CTLA-4 inhibited gamma interferon (IFN-γ) production in M. avium subsp. paratuberculosis-stimulated PBMCs, while blockade by anti-bovine CTLA-4 monoclonal antibody increased the secretion of IFN-γ and tumor necrosis factor alpha production in these PBMCs. These preliminary findings show that PGE2 has immunosuppressive effects via CTLA-4 to M. avium subsp. paratuberculosis. Therefore, it is necessary to clarify in the future whether CTLA-4-mediated immunosuppression facilitates disease progression of paratuberculosis in cattle.


Cattle Diseases , Mycobacterium avium subsp. paratuberculosis , Paratuberculosis , Animals , Cattle , CTLA-4 Antigen/metabolism , Interferon-gamma , Leukocytes, Mononuclear , Tumor Necrosis Factor-alpha/metabolism , Abatacept/metabolism , Immunosuppression Therapy , Prostaglandins E/metabolism , Prostaglandins/metabolism , Antibodies, Monoclonal/metabolism
6.
Sci Rep ; 12(1): 9265, 2022 06 03.
Article En | MEDLINE | ID: mdl-35665759

Immune checkpoint inhibitors (ICIs) such as anti-PD-L1 antibodies are widely used to treat human cancers, and growing evidence suggests that ICIs are promising treatments for canine malignancies. However, only some canine oral malignant melanoma (OMM) cases respond to ICIs. To explore biomarkers predictive of survival in dogs with pulmonary metastatic OMM receiving the anti-PD-L1 antibody c4G12 (n = 27), serum concentrations of prostaglandin E2 (PGE2), cytokines, chemokines, and growth factors were measured prior to treatment initiation. Among 12 factors tested, PGE2, interleukin (IL)-12p40, IL-8, monocyte chemotactic protein-1 (MCP-1), and stem cell factor (SCF) were higher in OMM dogs compared to healthy dogs (n = 8). Further, lower baseline serum PGE2, MCP-1, and vascular endothelial growth factor (VEGF)-A concentrations as well as higher IL-2, IL-12, and SCF concentrations predicted prolonged overall survival. These observations suggest that PGE2 confers resistance against anti-PD-L1 therapy through immunosuppression and thus is a candidate target for combination therapy. Indeed, PGE2 suppressed IL-2 and interferon (IFN)-γ production by stimulated canine peripheral blood mononuclear cells (PBMCs), while inhibition of PGE2 biosynthesis using the COX-2 inhibitor meloxicam in combination with c4G12 enhanced Th1 cytokine production by PBMCs. Thus, serum PGE2 may be predictive of c4G12 treatment response, and concomitant use of COX-2 inhibitors may enhance ICI antitumor efficacy.


Melanoma , Vascular Endothelial Growth Factor A , Animals , B7-H1 Antigen/metabolism , Biomarkers , Cyclooxygenase 2 , Cyclooxygenase 2 Inhibitors/pharmacology , Cyclooxygenase 2 Inhibitors/therapeutic use , Dinoprostone/therapeutic use , Dogs , Interleukin-2/therapeutic use , Leukocytes, Mononuclear/metabolism , Melanoma/drug therapy , Melanoma/veterinary , Skin Neoplasms , Melanoma, Cutaneous Malignant
7.
Ticks Tick Borne Dis ; 13(4): 101963, 2022 07.
Article En | MEDLINE | ID: mdl-35569365

Borrelia miyamotoi infection is an emerging tick-borne disease that causes hard tick-borne relapsing fever. B. miyamotoi is transmitted through the bite of ticks, including Ixodes persulcatus. Although accumulating evidence suggests that tick salivary proteins enhance the infectivity of other tick-borne pathogens, the association of B. miyamotoi with tick-derived proteins remains unknown. In this study, the effect of I. persulcatus sialostatin L2 (Ip-sL2), a tick-derived cystatin, on specific immunity to B. miyamotoi was preliminarily investigated in vitro. Mice were immunized with heat-killed B. miyamotoi and in vitro analyses of the splenocytes of the immunized mice indicated that the expression levels of the activation markers of CD11c+ and CD3+ cells were significantly upregulated by B. miyamotoi stimulation. Spleen cells from B. miyamotoi-immunized mice were used to determine whether Ip-sL2 regulates murine immune responses against B. miyamotoi. Treatment with Ip-sL2 in vitro inhibited the activation of CD11c+ and CD3+ cells as well as inflammatory cytokine production by cultured splenocytes. These findings show that Ip-sL2 has modulatory effects on murine immune responses to B. miyamotoi. Therefore, it is necessary to clarify in the future whether Ip-sL2 is involved in the enhanced infectivity of B. miyamotoi.


Borrelia , Ixodes , Relapsing Fever , Tick-Borne Diseases , Animals , Arthropod Proteins , Ixodes/physiology , Mice
8.
PLoS One ; 17(3): e0263660, 2022.
Article En | MEDLINE | ID: mdl-35263339

Immune suppression during pregnancy and parturition is considered a risk factor that is related to the progression of bovine chronic diseases, such as bovine leukosis, which is caused by bovine leukemia virus (BLV). Our previous studies have demonstrated that prostaglandin E2 (PGE2) suppresses BLV-specific Th1 responses and contributes to the disease progression during BLV infection. Although PGE2 reportedly plays important roles in the induction of parturition, PGE2 involvement in immune suppression during parturition is unknown. To investigate its involvement, we analyzed PGE2 kinetics and Th1 responses in BLV-infected pregnant cattle. PGE2 concentrations in sera were increased, whereas IFN-γ responses were decreased before delivery. PGE2 is known to suppress Th1 immune responses in cattle. Thus, these data suggest that PGE2 upregulation inhibits Th1 responses during parturition. We also found that estradiol was important for PGE2 induction in pregnant cattle. In vitro analyses indicated that estradiol suppressed IFN-γ production, at least in part, via PGE2/EP4 signaling. In vivo analyses showed that estradiol administration significantly influenced the induction of PGE2 production and impaired Th1 responses. Our data suggest that estradiol-induced PGE2 is involved in the suppression of Th1 responses during pregnancy and parturition in cattle, which could contribute to the progression of BLV infection.


Cattle Diseases , Enzootic Bovine Leukosis , Leukemia Virus, Bovine , Animals , Cattle , Dinoprostone , Estradiol , Female , Leukemia Virus, Bovine/physiology , Parturition , Pregnancy
9.
J Vet Med Sci ; 84(1): 6-15, 2022 Jan 07.
Article En | MEDLINE | ID: mdl-34789592

Our previous studies demonstrate the therapeutic efficacy against bovine diseases of an anti-bovine programmed death-ligand 1 (PD-L1) chimeric antibody. In humans, PD-1 and PD-L1 antibodies are more effective when combined with an antibody targeting cytotoxic T lymphocyte antigen 4 (CTLA-4) and these combination therapies are therefore clinically used. Here we generated an anti-bovine CTLA-4 chimeric antibody (chAb) to enhance the therapeutic efficacy of the PD-L1 antibody. We further analyzed the effects of dual blockade of CTLA-4 and PD-1 pathways on T-cell responses. The established anti-bovine CTLA-4 chAb showed comparable blocking activity on the binding of bovine CTLA-4 to CD80 and CD86 as the anti-bovine CTLA-4 mouse monoclonal antibody. Anti-bovine CTLA-4 chAb also significantly increased IL-2 production from bovine peripheral blood mononuclear cells (PBMCs). Further, the combination of anti-CTLA-4 chAb with anti-PD-L1 chAb significantly upregulated IL-2 production by PBMCs. These results suggest that the combination of antibodies have higher potential to enhance immune responses against pathogens compared with single administration.


B7-H1 Antigen , Interleukin-2 , Animals , Antibodies, Monoclonal , CTLA-4 Antigen , Cattle , Leukocytes, Mononuclear , Mice , Programmed Cell Death 1 Receptor
10.
Sci Rep ; 11(1): 1063, 2021 01 13.
Article En | MEDLINE | ID: mdl-33441793

The tick Rhipicephalus microplus is a harmful parasite of cattle that causes considerable economic losses to the cattle breeding industry. Although R. microplus saliva (Rm-saliva) contains several immunosuppressants, any association between Rm-saliva and the expression of immunoinhibitory molecules, such as programmed death (PD)-1 and PD-ligand 1 (PD-L1), has not been described. In this study, flow cytometric analyses revealed that Rm-saliva upregulated PD-1 expression in T cells and PD-L1 expression in CD14+ and CD11c+ cells in cattle. Additionally, Rm-saliva decreased CD69 expression in T cells and Th1 cytokine production from peripheral blood mononuclear cells. Furthermore, PD-L1 blockade increased IFN-γ production in the presence of Rm-saliva, suggesting that Rm-saliva suppresses Th1 responses via the PD-1/PD-L1 pathway. To reveal the upregulation mechanism of PD-1/PD-L1 by Rm-saliva, we analyzed the function of prostaglandin E2 (PGE2), which is known as an inducer of PD-L1 expression, in Rm-saliva. We found that Rm-saliva contained a high concentration of PGE2, and PGE2 treatment induced PD-L1 expression in CD14+ cells in vitro. Immunohistochemical analyses revealed that PGE2 and PD-L1 expression was upregulated in tick-attached skin in cattle. These data suggest that PGE2 in Rm-saliva has the potential to induce the expression of immunoinhibitory molecules in host immune cells.


B7-H1 Antigen/metabolism , Host-Parasite Interactions , Immune Tolerance , Programmed Cell Death 1 Receptor/metabolism , Rhipicephalus/physiology , Saliva/physiology , Tick Bites/veterinary , Animals , Cattle/metabolism , Cattle/parasitology , Dinoprostone/metabolism , Flow Cytometry , Metabolic Networks and Pathways , Th1 Cells/physiology , Tick Bites/immunology , Tick Bites/metabolism
11.
Vet Microbiol ; 254: 108976, 2021 Mar.
Article En | MEDLINE | ID: mdl-33453627

Diarrhea is a major cause of death in calves and this is linked directly to economic loss in the cattle industry. Fermented milk replacer (FMR) has been used widely in clinical settings for calf feeding to improve its health and growth. However, the protective efficacy of FMR on calf diarrhea remains unclear. In this study, we verified the preventive effects of FMR feeding on calf diarrhea using an experimental infection model of bovine rotavirus (BRV) in newborn calves and a field study in dairy farms with calf diarrhea. In addition, we evaluated the protective efficacy of lactic acid bacteria-supplemented milk replacer (LAB-MR) in an experimental infection model. In the experimental infection, calves fed FMR or high-concentrated LAB-MR had diarrhea, but the water content of feces was lower and more stable than that of calves fed normal milk replacer. The amount of milk intake also decreased temporarily, but recovered immediately in the FMR- and LAB-MR-fed calves. As compared with the control calves, FMR- or LAB-MR-fed calves showed less severe or reduced histopathological lesions of enteritis in the intestinal mucosa. In a field study using dairy calves, FMR feeding significantly reduced the incidence of enteritis, mortality from enteritis, duration of a series of treatment for enteritis, number of consultations, and cost of medical care for the disease. These results suggest that feeding milk replacer-based probiotics to calves reduces the severity of diarrhea and tissue damage to the intestinal tract caused by BRV infection and provides significant clinical benefits to the prevention and treatment of calf diarrhea.


Animal Feed/analysis , Diarrhea/prevention & control , Diarrhea/veterinary , Enteritis/veterinary , Milk , Probiotics/administration & dosage , Rotavirus Infections/prevention & control , Rotavirus Infections/veterinary , Animals , Cattle , Cattle Diseases/prevention & control , Cattle Diseases/virology , Cultured Milk Products , Diarrhea/therapy , Dietary Supplements , Enteritis/prevention & control , Female , Intestinal Mucosa/pathology , Intestinal Mucosa/virology , Male , Pregnancy , Probiotics/therapeutic use , Rotavirus Infections/therapy , Weaning
12.
J Vet Med Sci ; 83(2): 162-166, 2021 Feb 25.
Article En | MEDLINE | ID: mdl-33281144

Johne's disease, caused by Mycobacterium avium subsp. paratuberculosis (MAP), is a chronic enteritis of ruminants. Previous studies have shown that programmed death-ligand 1 (PD-L1) is associated with the disease progression, and PD-L1 blockade activates MAP-specific Th1 responses in vitro. Here, we performed anti-PD-L1 antibody administration using 2 MAP-infected cattle at the late subclinical stage of infection. After administration, bacterial shedding was reduced or maintained at a low level. Additionally, MAP-specific Th1 cytokine production was upregulated, and CD69 expression was increased in T cells. Collectively, the treatment has a potential as a novel control method against Johne's disease.


B7-H1 Antigen/immunology , Cattle Diseases/immunology , Mycobacterium avium subsp. paratuberculosis/immunology , Paratuberculosis/immunology , Animals , Bacterial Shedding/drug effects , Bacterial Shedding/immunology , Cattle , Cattle Diseases/drug therapy , Cattle Diseases/parasitology , Male , Paratuberculosis/drug therapy
13.
Dev Comp Immunol ; 114: 103847, 2021 01.
Article En | MEDLINE | ID: mdl-32888966

Bovine leukemia virus (BLV) infection is a bovine chronic infection caused by BLV, a member of the genus Deltaretrovirus. In this study, we examined the immunomodulatory effects of GS-9620, a toll-like receptor (TLR) 7 agonist, in cattle (Bos taurus) and its therapeutic potential for treating BLV infection. GS-9620 induced cytokine production in peripheral blood mononuclear cells (PBMCs) as well as CD80 expression in CD11c+ cells and increased CD69 and interferon (IFN)-γ expressions in T cells. Removing CD11c+ cells from PBMCs decreased CD69 expression in T cells in the presence of GS-9620. These results suggest that TLR7 agonism promotes T-cell activation via CD11c+ cells. Analyses using PBMCs from BLV-infected cattle revealed that TLR7 expression in CD11c+ cells was upregulated during late-stage BLV infection. Furthermore, GS-9620 increased IFN-γ and TNF-α production and inhibited syncytium formation in vitro, suggesting that GS-9620 may be used to treat BLV infection.


Antiviral Agents/therapeutic use , Enzootic Bovine Leukosis/immunology , Leukemia Virus, Bovine/physiology , Pteridines/therapeutic use , Th1 Cells/immunology , Toll-Like Receptor 7/agonists , Animals , Antigens, CD/metabolism , Antigens, Differentiation, T-Lymphocyte/metabolism , Antiviral Agents/pharmacology , CD11c Antigen/metabolism , Cattle , Cells, Cultured , Enzootic Bovine Leukosis/drug therapy , Interferon-gamma/metabolism , Lectins, C-Type/metabolism , Lymphocyte Activation , Pteridines/pharmacology , Tumor Necrosis Factor-alpha/metabolism , Viral Load
14.
Front Vet Sci ; 7: 609443, 2020.
Article En | MEDLINE | ID: mdl-33344537

Regulatory T cells (Tregs) regulate immune responses and maintain host immune homeostasis. Tregs contribute to the disease progression of several chronic infections by oversuppressing immune responses via the secretion of immunosuppressive cytokines, such as transforming growth factor (TGF)-ß and interleukin-10. In the present study, we examined the association of Tregs with Mycoplasma bovis infection, in which immunosuppression is frequently observed. Compared with uninfected cattle, the percentage of Tregs, CD4+CD25highFoxp3+ T cells, was increased in M. bovis-infected cattle. Additionally, the plasma of M. bovis-infected cattle contained the high concentrations of TGF-ß1, and M. bovis infection induced TGF-ß1 production from bovine immune cells in in vitro cultures. Finally, we analyzed the immunosuppressive effects of TGF-ß1 on bovine immune cells. Treatment with TGF-ß1 significantly decreased the expression of CD69, an activation marker, in T cells, and Th1 cytokine production in vitro. These results suggest that the increase in Tregs and TGF-ß1 secretion could be one of the immunosuppressive mechanisms and that lead to increased susceptibility to other infections in terms of exacerbation of disease during M. bovis infection.

15.
Front Vet Sci ; 7: 12, 2020.
Article En | MEDLINE | ID: mdl-32154274

Bovine mycoplasmosis caused by Mycoplasma bovis results in pneumonia and mastitis in cattle. We previously demonstrated that the programmed death 1 (PD-1)/PD-ligand 1 (PD-L1) pathway is involved in immune dysfunction during M. bovis infection and that prostaglandin E2 (PGE2) suppressed immune responses and upregulated PD-L1 expression in Johne's disease, a bacterial infection in cattle. In this study, we investigated the role of PGE2 in immune dysfunction and the relationship between PGE2 and the PD-1/PD-L1 pathway in M. bovis infection. In vitro stimulation with M. bovis upregulated the expressions of PGE2 and PD-L1 presumably via Toll-like receptor 2 in bovine peripheral blood mononuclear cells (PBMCs). PGE2 levels of peripheral blood in infected cattle were significantly increased compared with those in uninfected cattle. Remarkably, plasma PGE2 levels were positively correlated with the proportions of PD-L1+ monocytes in M. bovis-infected cattle. Additionally, plasma PGE2 production in infected cattle was negatively correlated with M. bovis-specific interferon (IFN)-γ production from PBMCs. These results suggest that PGE2 could be one of the inducers of PD-L1 expression and could be involved in immunosuppression during M. bovis infection. In vitro blockade assays using anti-bovine PD-L1 antibody and a cyclooxygenase 2 inhibitor significantly upregulated the M. bovis-specific IFN-γ response. Our study findings might contribute to the development of novel therapeutic strategies for bovine mycoplasmosis that target PGE2 and the PD-1/PD-L1 pathway.

16.
Immunohorizons ; 4(12): 837-850, 2020 12 21.
Article En | MEDLINE | ID: mdl-33443026

Combination treatment approaches are increasingly considered to overcome resistance to immunotherapy targeting immunoinhibitory molecules such as programmed death (PD)-1 and PD-ligand 1 (PD-L1). Previous studies have demonstrated that the therapeutic efficacy of anti-PD-L1 Abs is enhanced by combination treatment with cyclooxygenase-2 inhibitors, through downregulation of the immunosuppressive eicosanoid PGE2, although the underlying mechanism remains unclear. In this study, we show that serum PGE2 levels are upregulated after anti-PD-L1 Ab administration in a bovine model of immunotherapy and that PGE2 directly inhibits T cell activation via its receptor E prostanoid (EP) 4. Additionally, anti-PD-L1 Ab induces TNF-α production and TNF-α blockade reduces PGE2 production in the presence of anti-PD-L1 Ab, suggesting that anti-PD-L1 Ab-induced TNF-α impairs T cell activation by PGE2 upregulation. Our studies examining the therapeutic potential of the dual blockade of PD-L1 and EP4 in bovine and murine immune cells reveal that the dual blockade of PD-L1 and EP4 significantly enhances Th1 cytokine production in vitro. Finally, we show that the dual blockade decreases tumor volume and prolongs survival in mice inoculated with the murine lymphoma cell line EG7. Altogether, these results suggest that TNF-α induced by anti-PD-L1 Ab treatment is associated with T cell dysfunction via PGE2/EP4 pathway and that the dual blockade of PD-L1 and EP4 should be considered as a novel immunotherapy for cancer.


B7-H1 Antigen/antagonists & inhibitors , Dinoprostone/blood , Receptors, Prostaglandin E, EP4 Subtype/antagonists & inhibitors , T-Lymphocytes/immunology , Tumor Necrosis Factor-alpha/metabolism , Animals , Antibodies, Monoclonal/pharmacology , Cattle , Female , Immunotherapy/methods , Lymphocyte Activation , Male , Mice , Mice, Inbred BALB C , T-Lymphocytes/drug effects , Tumor Necrosis Factor-alpha/drug effects
17.
Ticks Tick Borne Dis ; 11(2): 101332, 2020 03.
Article En | MEDLINE | ID: mdl-31734217

Tick saliva contains immunosuppressants which are important to obtain a blood meal and enhance the infectivity of tick-borne pathogens. In Japan, Ixodes persulcatus is a major vector for Lyme borreliosis pathogens, such as Borrelia garinii, as well as for those causing relapsing fever, such as B. miyamotoi. To date, little information is available on bioactive salivary molecules, produced by this tick. Thus, in this study, we identified two proteins, I. persulcatus derived sialostatin L1 (Ip-sL1) and sL2 (Ip-sL2), as orthologs of I. scapularis derived sL1 and sL2. cDNA clones of Ip-sL1 and Ip-sL2 shared a high identity with sequences of sL1 and sL2 isolated from the salivary glands of I. scapularis. Semi-quantitative PCR revealed that Ip-sL1 and Ip-sL2 were expressed in the salivary glands throughout the life of the tick. In addition, Ip-sL1 and Ip-sL2 were expressed even before the ticks started feeding, and their expression continued during blood feeding. Recombinant Ip-sL1 and Ip-sL2 were developed to characterize the proteins via biological and immunological analyses. These analyses revealed that both Ip-sL1 and Ip-sL2 had inhibitory effects on cathepsins L and S. Ip-sL1 and Ip-sL2 inhibited the production of IP-10, TNFα, and IL-6 by LPS-stimulated bone-marrow-derived dendritic cells (BMDCs). Additionally, Ip-sL1 significantly impaired BMDC maturation. Taken together, these results suggest that Ip-sL1 and Ip-sL2 confer immunosuppressive functions and appear to be involved in the transmission of pathogens by suppressing host immune responses, such as cytokine production and dendritic cell maturation. Therefore, further studies are warranted to investigate the immunosuppressive functions of Ip-sL1 and Ip-sL2 in detail to clarify their involvement in pathogen transmission via I. persulcatus.


Arthropod Proteins/immunology , Cystatins/immunology , Immunity, Innate/physiology , Ixodes/physiology , Amino Acid Sequence , Animals , Base Sequence , Female , Mice , Mice, Inbred BALB C , Phylogeny , Sequence Alignment
18.
J Immunol ; 203(5): 1313-1324, 2019 09 01.
Article En | MEDLINE | ID: mdl-31366713

Bovine leukemia virus (BLV) infection is a chronic viral infection of cattle and endemic in many countries, including Japan. Our previous study demonstrated that PGE2, a product of cyclooxygenase (COX) 2, suppresses Th1 responses in cattle and contributes to the progression of Johne disease, a chronic bacterial infection in cattle. However, little information is available on the association of PGE2 with chronic viral infection. Thus, we analyzed the changes in plasma PGE2 concentration during BLV infection and its effects on proviral load, viral gene transcription, Th1 responses, and disease progression. Both COX2 expression by PBMCs and plasma PGE2 concentration were higher in the infected cattle compared with uninfected cattle, and plasma PGE2 concentration was positively correlated with the proviral load. BLV Ag exposure also directly enhanced PGE2 production by PBMCs. Transcription of BLV genes was activated via PGE2 receptors EP2 and EP4, further suggesting that PGE2 contributes to disease progression. In contrast, inhibition of PGE2 production using a COX-2 inhibitor activated BLV-specific Th1 responses in vitro, as evidenced by enhanced T cell proliferation and Th1 cytokine production, and reduced BLV proviral load in vivo. Combined treatment with the COX-2 inhibitor meloxicam and anti-programmed death-ligand 1 Ab significantly reduced the BLV proviral load, suggesting a potential as a novel control method against BLV infection. Further studies using a larger number of animals are required to support the efficacy of this treatment for clinical application.


Antibodies/pharmacology , B7-H1 Antigen/immunology , Cyclooxygenase 2 Inhibitors/pharmacology , Dinoprostone/pharmacology , Enzootic Bovine Leukosis/drug therapy , Immunity/drug effects , Leukemia Virus, Bovine/drug effects , Animals , Antiviral Agents/pharmacology , Cattle , Cyclooxygenase 2/metabolism , Enzootic Bovine Leukosis/immunology , Enzootic Bovine Leukosis/virology , Leukemia Virus, Bovine/immunology , Proviruses/drug effects , Proviruses/immunology , Viral Load/drug effects , Viral Load/immunology
19.
Infect Immun ; 86(5)2018 05.
Article En | MEDLINE | ID: mdl-29483289

Johne's disease, caused by Mycobacterium avium subsp. paratuberculosis, is a bovine chronic infection that is endemic in Japan and many other countries. The expression of immunoinhibitory molecules is upregulated in cattle with Johne's disease, but the mechanism of immunosuppression is poorly understood. Prostaglandin E2 (PGE2) is immunosuppressive in humans, but few veterinary data are available. In this study, functional and kinetic analyses of PGE2 were performed to investigate the immunosuppressive effect of PGE2 during Johne's disease. In vitro PGE2 treatment decreased T-cell proliferation and Th1 cytokine production and upregulated the expression of immunoinhibitory molecules such as interleukin-10 and programmed death ligand 1 (PD-L1) in peripheral blood mononuclear cells (PBMCs) from healthy cattle. PGE2 was upregulated in sera and intestinal lesions of cattle with Johne's disease. In vitro stimulation with Johnin purified protein derivative (J-PPD) induced cyclooxygenase-2 (COX-2) transcription, PGE2 production, and upregulation of PD-L1 and immunoinhibitory receptors in PBMCs from cattle infected with M. avium subsp. paratuberculosis Therefore, Johnin-specific Th1 responses could be limited by the PGE2 pathway in cattle. In contrast, downregulation of PGE2 with a COX-2 inhibitor promoted J-PPD-stimulated CD8+ T-cell proliferation and Th1 cytokine production in PBMCs from the experimentally infected cattle. PD-L1 blockade induced J-PPD-stimulated CD8+ T-cell proliferation and interferon gamma production in vitro Combined treatment with a COX-2 inhibitor and anti-PD-L1 antibodies enhanced J-PPD-stimulated CD8+ T-cell proliferation in vitro, suggesting that the blockade of both pathways is a potential therapeutic strategy to control Johne's disease. The effects of COX-2 inhibition warrant further study as a novel treatment of Johne's disease.


Adaptive Immunity/immunology , Cattle Diseases/immunology , Cattle Diseases/pathology , Dinoprostone/immunology , Dinoprostone/metabolism , Paratuberculosis/immunology , Paratuberculosis/pathology , Animals , B7-H1 Antigen/immunology , B7-H1 Antigen/metabolism , Cattle , Cattle Diseases/microbiology , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism
20.
J Vet Med Sci ; 79(12): 2036-2039, 2017 Dec 22.
Article En | MEDLINE | ID: mdl-29109356

Enzootic bovine leukemia is caused by the bovine leukemia virus (BLV). BLV is transmitted vertically or horizontally through the transfer of infected cells via direct contact, through milk, insect bites and contaminated iatrogenic procedures. However, we lacked direct evidence of intrauterine infection. The purpose of this study was to confirm intrauterine BLV infection in two pregnant dams with high viral load by cesarean delivery. BLV was detected in cord and placental blood, and the BLV in the newborns showed 100% nucleotide identity with the BLV-env sequence from the dams. Notably, a newborn was seropositive for BLV but had no colostral antibodies. In this study, we presented a direct evidence of intrauterine BLV transmission in pregnant dam with a high proviral load. These results could aid the development of BLV control measures targeting viral load.


Enzootic Bovine Leukosis/transmission , Infectious Disease Transmission, Vertical/veterinary , Leukemia Virus, Bovine , Animals , Animals, Newborn/virology , Cattle , Enzootic Bovine Leukosis/virology , Female , Pregnancy , Uterus/virology , Viral Load
...