Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 12 de 12
1.
Sci Rep ; 13(1): 13474, 2023 08 18.
Article En | MEDLINE | ID: mdl-37596340

The encapsulation of plant extract in nanomatrices has limitations due to its adhesion to walls, size control, high cost and long durations that results in low yield. Macroscale and microscale level techniques for development of micro/nanoparticles may impact the encapsulation of plant extract. This study aimed to evaluate the relative efficiency of microscale and macroscale techniques for encapsulation of plant extract, which is not compared yet. Keeping this in view, encapsulation of Calotropis gigantea leaves extract (CaG) was attained in silver-conjugated poliglusam nanomatrices (POL/Ag) to induce apoptosis in invasive ductal carcinoma (IDC) cells. The ethanolic CaG extract was prepared using percolation method and characterized by chemical tests for its active phytochemical compounds. The droplet-based microfluidic system was utilized as microscale encapsulation technique for CaG in nanomatrices at two different aqueous to oil flow rate ratios 1.0:1.5, and 1.0:3.0. Moreover, conventional batch system was utilized as macroscale encapsulation technique consisted of hot plate magnetic stirrer. The prepared nanomatrices were analysed for antioxidant activity using DPPH test and for cytotoxicity analysis using MCF-7 cells. The characteristic peaks of UV-Vis, FTIR and XRD spectrum confirmed the synthesis of CaG(POL/Ag) by both the encapsulation methods. However, microfluidic system was found to be more expedient because of attaining small and uniform sized silver nanoparticles (92 ± 19 nm) at high flow rate and achieving high encapsulation efficiency (80.25%) as compared to the conventional batch method (52.5%). CaG(POL/Ag) nanomatrices found to have significant antioxidant activity (p = 0.0014) against DPPH radical scavenging activity. The CaG(POL/Ag) of the smallest sized formulated by the microfluidic system has also shown the highest cytotoxicity (90%) as compared to batch method (70%) at 80 µg/mL. Our results indicate that the microscale technique using microfluidic system is a more efficient method to formulate size-controlled CaG(POL/Ag) nanomatrices and achieve high encapsulation of plant extract. Additionally, CaG(Pol/Ag) was found to be an efficient new combination for inducing potent (p < 0.0001) apoptosis in IDC cells. Therefore, CaG(Pol/Ag) can be further tested as an anti-cancer agent for in-vivo experiments.


Calotropis , Carcinoma, Ductal , Metal Nanoparticles , Silver , Antioxidants/pharmacology , Plant Extracts/pharmacology
2.
Molecules ; 27(19)2022 Oct 06.
Article En | MEDLINE | ID: mdl-36235187

Ionic liquids (ILs) have emerged as active pharmaceutical ingredients because of their excellent antibacterial and biological activities. Herein, we used the green-chemistry-synthesis procedure, also known as the metathesis method, to develop three series of ionic liquids using 1-methyl-3-butyl imidazolium, butyl pyridinium, and diethyldibutylammonium as cations, and bromide (Br-), methanesulfonate (CH3SO3-), bis(trifluoromethanesulfonyl)imide (NTf2-), dichloroacetate (CHCl2CO2-), tetrafluoroborate (BF4-), and hydrogen sulfate (HSO4-) as anions. Spectroscopic methods were used to validate the structures of the lab-synthesized ILs. We performed an agar well diffusion assay by using pathogenic bacteria that cause various infections (Escherichia coli; Enterobacter aerogenes; Klebsiella pneumoniae; Proteus vulgaris; Pseudomonas aeruginosa; Streptococcus pneumoniae; Streptococcus pyogenes) to scrutinize the in vitro antibacterial activity of the ILs. It was established that the nature and unique combination of the cations and anions were responsible for the antibacterial activity of the ILs. Among the tested ionic liquids, the imidazolium cation and NTf2- and HSO4- anions exhibited the highest antibacterial activity. The antibacterial potential was further investigated by in silico studies, and it was observed that bis(trifluoromethanesulfonyl)imide (NTf2-) containing imidazolium and pyridinium ionic liquids showed the maximum inhibition against the targeted bacterial strains and could be utilized in antibiotics. These antibacterial activities float the ILs as a promising alternative to the existing antibiotics and antiseptics.


Ammonium Compounds , Anti-Infective Agents, Local , Ionic Liquids , Agar , Anions/chemistry , Anti-Bacterial Agents/pharmacology , Bromides/chemistry , Carbon Dioxide , Cations/chemistry , Escherichia coli , Hydrocarbons, Fluorinated , Hydrogen , Imidazoles/chemistry , Imidazoles/pharmacology , Imides , Ionic Liquids/chemistry , Ionic Liquids/pharmacology , Mesylates , Pharmaceutical Preparations , Sulfates
3.
Stem Cell Res ; 63: 102853, 2022 08.
Article En | MEDLINE | ID: mdl-35816920

Here we report the generation of the first Emirati iPSC line in the United Arab Emirates and name it KUSTi001-A. CD34+ hematopoietic cells purified from peripheral blood of a 27-year-old healthy female donor were reprogrammed using Sendai vectors. Twenty days post-reprogramming colonies were manually picked, and expanded clones were verified for transgene clearance by RT-PCR. Pluripotency was validated by pluripotency genes and differentiation into all three germ layers. Finally, chromosome stability was confirmed by testing 8 common abnormality loci. KUSTi001-A, alternatively called UAE001, is an Emirati hiPSC line that holds great potential for UAE specific regenerative medicine, disease modelling and drug screening.


Induced Pluripotent Stem Cells , Adult , Cell Differentiation/genetics , Cellular Reprogramming , Female , Genetic Vectors , Humans , Induced Pluripotent Stem Cells/metabolism , Leukocytes, Mononuclear/metabolism , Sendai virus/genetics , United Arab Emirates
4.
Int J Mol Sci ; 23(7)2022 Mar 30.
Article En | MEDLINE | ID: mdl-35409166

Fat mass and obesity-associated protein (FTO) is the first reported RNA N6-methyladenosine (m6A) demethylase in eukaryotic cells. m6A is considered as the most abundant mRNA internal modification, which modulates several cellular processes including alternative splicing, stability, and expression. Genome-wide association studies (GWAS) identified single-nucleotide polymorphisms (SNPs) within FTO to be associated with obesity, as well as cancer including endometrial cancer, breast cancer, pancreatic cancer, and melanoma. Since the initial classification of FTO as an m6A demethylase, various studies started to unravel a connection between FTO's demethylase activity and the susceptibility to obesity on the molecular level. FTO was found to facilitate adipogenesis, by regulating adipogenic pathways and inducing pre-adipocyte differentiation. FTO has also been investigated in tumorigenesis, where emerging studies suggest m6A and FTO levels are dysregulated in various cancers, including acute myeloid leukemia (AML), glioblastoma, cervical squamous cell carcinoma (CSCC), breast cancer, and melanoma. Here we review the molecular bases of m6A in tumorigenesis and adipogenesis while highlighting the controversial role of FTO in obesity. We provide recent findings confirming FTO's causative link to obesity and discuss novel approaches using RNA demethylase inhibitors as targeted oncotherapies. Our review aims to confirm m6A demethylation as a risk factor in obesity and provoke new research in FTO and human disorders.


Breast Neoplasms , Carcinoma, Squamous Cell , Melanoma , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/metabolism , Carcinogenesis/genetics , Cell Transformation, Neoplastic , Female , Genome-Wide Association Study , Humans , Obesity/complications , Obesity/genetics , RNA, Messenger/genetics
5.
Molecules ; 27(4)2022 Feb 17.
Article En | MEDLINE | ID: mdl-35209141

In the present study, five 4-aminophenol derivatives (4-chloro-2-(((4-hydroxyphenyl)imino)methyl)phenol(S-1), 4-((4-(dimethylamino)benzylidene)amino)phenol(S-2), 4-((3-nitrobenzylidene)amino)phenol(S-3), 4-((thiophen-2-ylmethylene)amino)phenol(S-4) and 4-(((E)-3-phenylallylidene)amino)phenol(S-5)) were synthesized and characterized by FT-IR, 1H-NMR, 13C-NMR and elemental analyses. The synthesized compounds were tested for their antimicrobial (Gram-positive and Gram-negative bacteria and Saccharomyces cervesea fungus) and antidiabetic (α-amylase and α-glucosidase inhibitory) activities. All the compounds showed broad-spectrum activities against the Staphylococcus aureus (ATCC 6538), Micrococcus luteus (ATCC 4698), Staphylococcus epidermidis (ATCC 12228), Bacillus subtilis sub. sp spizizenii (ATCC 6633), Bordetella bronchiseptica (ATCC 4617) and Saccharomyces cerevisiae (ATCC 9763) strains. The newly synthesized compounds showed a significant inhibition of amylase (93.2%) and glucosidase (73.7%) in a concentration-dependent manner. Interaction studies of Human DNA with the synthesized Schiff bases were also performed. The spectral bands of S-1, S-2, S-3 and S-5 all showed hyperchromism, whereas the spectral band of S-4 showed a hypochromic effect. Moreover, the spectral bands of the S-2, S-3 and S-4 compounds were also found to exhibit a bathochromic shift (red shift). The present studies delineate broad-spectrum antimicrobial and antidiabetic activities of the synthesized compounds. Additionally, DNA interaction studies highlight the potential of synthetic compounds as anticancer agents. The DNA interaction studies, as well as the antidiabetic activities articulated by the molecular docking methods, showed the promising aspects of synthetic compounds.


Aminophenols/chemical synthesis , Aminophenols/pharmacology , DNA/chemistry , Aminophenols/chemistry , Anti-Infective Agents/chemical synthesis , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Binding Sites , Chemistry Techniques, Synthetic , DNA/metabolism , Humans , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Microbial Sensitivity Tests , Molecular Conformation , Molecular Docking Simulation , Molecular Dynamics Simulation , Molecular Structure , Protein Binding , Schiff Bases/chemistry , Spectrum Analysis , Structure-Activity Relationship
6.
Sensors (Basel) ; 21(23)2021 Dec 02.
Article En | MEDLINE | ID: mdl-34884060

Organophosphates (OPs) are neurotoxic agents also used as pesticides that can permanently block the active site of the acetylcholinesterase (AChE). A robust and sensitive detection system of OPs utilising the enzyme mimic potential of the cysteamine capped gold nanoparticles (C-AuNPs) was developed. The detection assay was performed by stepwise addition of AChE, parathion ethyl (PE)-a candidate OP, acetylcholine chloride (ACh), C-AuNPs, and 3, 3', 5, 5'-tetramethylbenzidine (TMB) in the buffer solution. The whole sensing protocol completes in 30-40 min, including both incubations. The Transmission Electron Microscopy (TEM) results indicated that the NPs are spherical and have an average size of 13.24 nm. The monomers of C-AuNPs exhibited intense catalytic activity (nanozyme) for the oxidization of TMB, revealed by the production of instant blue colour and confirmed by a sharp peak at 652 nm. The proposed biosensor's detection limit and linear ranges were 5.8 ng·mL-1 and 11.6-92.8 ng·mL-1, respectively, for PE. The results strongly advocate that the suggested facile colorimetric biosensor may provide an excellent platform for on-site monitoring of OPs.


Biosensing Techniques , Metal Nanoparticles , Pesticides , Acetylcholinesterase , Colorimetry , Cysteamine , Gold , Organophosphates , Pesticides/analysis
7.
J Epidemiol Glob Health ; 11(2): 155-159, 2021 06.
Article En | MEDLINE | ID: mdl-33605109

Countries in the Middle-East (ME) are tackling two corona virus outbreaks simultaneously, Middle-Eastern Respiratory Syndrome Coronavirus (MERS-CoV) and the current Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Both viruses infect the same host (humans) and the same cell (type-II alveolar cells) causing lower respiratory illnesses such as pneumonia. Molecularly, MERS-CoV and SARS-CoV-2 enter alveolar cells via spike proteins recognizing dipeptidyl peptidase-4 and angiotensin converting enzyme-II, respectively. Intracellularly, both viruses hide in organelles to generate negative RNA strands and initiate replication using very similar mechanisms. At the transcription level, both viruses utilise identical Transcription Regulatory Sequences (TRSs), which are known recombination cross-over points during replication, to transcribe genes. Using whole genome alignments of both viruses, we identify clusters of high sequence homology at ORF1a and ORF1b. Given the high recombination rates detected in SARS-CoV-2, we speculate that in co-infections recombination is feasible via TRS and/or clusters of homologies. Accordingly, here we recommend mitigation measure and testing for both MERS-CoV and SARS-CoV-2 in ME countries.


COVID-19/epidemiology , Coinfection/epidemiology , Coronavirus Infections/epidemiology , Middle East Respiratory Syndrome Coronavirus/genetics , Recombination, Genetic , SARS-CoV-2/genetics , Animals , COVID-19/virology , Camelus/virology , Humans , Middle East/epidemiology , Viral Zoonoses/epidemiology , Viral Zoonoses/transmission , Viral Zoonoses/virology
8.
Stem Cells ; 38(10): 1216-1228, 2020 10 01.
Article En | MEDLINE | ID: mdl-32598085

Stem cells (SCs) are unique cells that have an inherent ability to self-renew or differentiate. Both fate decisions are strongly regulated at the molecular level via intricate signaling pathways. The regulation of signaling networks promoting self-renewal or differentiation was thought to be largely governed by the action of transcription factors. However, small noncoding RNAs (ncRNAs), such as vault RNAs, and their post-transcriptional modifications (the epitranscriptome) have emerged as additional regulatory layers with essential roles in SC fate decisions. RNA post-transcriptional modifications often modulate RNA stability, splicing, processing, recognition, and translation. Furthermore, modifications on small ncRNAs allow for dual regulation of RNA activity, at both the level of biogenesis and RNA-mediated actions. RNA post-transcriptional modifications act through structural alterations and specialized RNA-binding proteins (RBPs) called writers, readers, and erasers. It is through SC-context RBPs that the epitranscriptome coordinates specific functional roles. Small ncRNA post-transcriptional modifications are today exploited by different mechanisms to facilitate SC translational studies. One mechanism readily being studied is identifying how SC-specific RBPs of small ncRNAs regulate fate decisions. Another common practice of using the epitranscriptome for regenerative applications is using naturally occurring post-transcriptional modifications on synthetic RNA to generate induced pluripotent SCs. Here, we review exciting insights into how small ncRNA post-transcriptional modifications control SC fate decisions in development and disease. We hope, by illustrating how essential the epitranscriptome and their associated proteome are in SCs, they would be considered as novel tools to propagate SCs for regenerative medicine.


RNA, Small Untranslated/genetics , Stem Cells/metabolism , Transcriptome/genetics , Animals , Epigenesis, Genetic , Humans , Neoplastic Stem Cells/metabolism , RNA, Small Untranslated/metabolism , RNA-Binding Proteins/metabolism
9.
Nat Commun ; 10(1): 2550, 2019 06 11.
Article En | MEDLINE | ID: mdl-31186410

The presence and absence of RNA modifications regulates RNA metabolism by modulating the binding of writer, reader, and eraser proteins. For 5-methylcytosine (m5C) however, it is largely unknown how it recruits or repels RNA-binding proteins. Here, we decipher the consequences of m5C deposition into the abundant non-coding vault RNA VTRNA1.1. Methylation of cytosine 69 in VTRNA1.1 occurs frequently in human cells, is exclusively mediated by NSUN2, and determines the processing of VTRNA1.1 into small-vault RNAs (svRNAs). We identify the serine/arginine rich splicing factor 2 (SRSF2) as a novel VTRNA1.1-binding protein that counteracts VTRNA1.1 processing by binding the non-methylated form with higher affinity. Both NSUN2 and SRSF2 orchestrate the production of distinct svRNAs. Finally, we discover a functional role of svRNAs in regulating the epidermal differentiation programme. Thus, our data reveal a direct role for m5C in the processing of VTRNA1.1 that involves SRSF2 and is crucial for efficient cellular differentiation.


5-Methylcytosine/metabolism , DNA Methylation , Epidermal Cells/cytology , Methyltransferases/metabolism , RNA/metabolism , Vault Ribonucleoprotein Particles/genetics , Cell Differentiation , Cell Line , Cytosine/metabolism , Epidermal Cells/metabolism , HEK293 Cells , HeLa Cells , Human Embryonic Stem Cells/cytology , Humans , Methyltransferases/genetics , RNA/genetics , Vault Ribonucleoprotein Particles/metabolism
10.
PLoS Biol ; 17(6): e3000297, 2019 06.
Article En | MEDLINE | ID: mdl-31199786

Posttranscriptional modifications in transfer RNA (tRNA) are often critical for normal development because they adapt protein synthesis rates to a dynamically changing microenvironment. However, the precise cellular mechanisms linking the extrinsic stimulus to the intrinsic RNA modification pathways remain largely unclear. Here, we identified the cytosine-5 RNA methyltransferase NSUN2 as a sensor for external stress stimuli. Exposure to oxidative stress efficiently repressed NSUN2, causing a reduction of methylation at specific tRNA sites. Using metabolic profiling, we showed that loss of tRNA methylation captured cells in a distinct catabolic state. Mechanistically, loss of NSUN2 altered the biogenesis of tRNA-derived noncoding fragments (tRFs) in response to stress, leading to impaired regulation of protein synthesis. The intracellular accumulation of a specific subset of tRFs correlated with the dynamic repression of global protein synthesis. Finally, NSUN2-driven RNA methylation was functionally required to adapt cell cycle progression to the early stress response. In summary, we revealed that changes in tRNA methylation profiles were sufficient to specify cellular metabolic states and efficiently adapt protein synthesis rates to cell stress.


DNA-Cytosine Methylases/metabolism , Methyltransferases/metabolism , Animals , Cell Line , Cytosine/metabolism , DNA Methylation/physiology , DNA-Cytosine Methylases/physiology , Humans , Mice , Oxidative Stress/physiology , Protein Biosynthesis/physiology , RNA/metabolism , RNA, Transfer/metabolism
11.
Cell Rep ; 4(2): 255-61, 2013 Jul 25.
Article En | MEDLINE | ID: mdl-23871666

Autosomal-recessive loss of the NSUN2 gene has been identified as a causative link to intellectual disability disorders in humans. NSun2 is an RNA methyltransferase modifying cytosine-5 in transfer RNAs (tRNAs), yet the identification of cytosine methylation in other RNA species has been hampered by the lack of sensitive and reliable molecular techniques. Here, we describe miCLIP as an additional approach for identifying RNA methylation sites in transcriptomes. miCLIP is a customized version of the individual-nucleotide-resolution crosslinking and immunoprecipitation (iCLIP) method. We confirm site-specific methylation in tRNAs and additional messenger and noncoding RNAs (ncRNAs). Among these, vault ncRNAs contained six NSun2-methylated cytosines, three of which were confirmed by RNA bisulfite sequencing. Using patient cells lacking the NSun2 protein, we further show that loss of cytosine-5 methylation in vault RNAs causes aberrant processing into Argonaute-associated small RNA fragments that can function as microRNAs. Thus, impaired processing of vault ncRNA may contribute to the etiology of NSun2-deficiency human disorders.


Cytosine/metabolism , DNA Methylation , Methyltransferases/metabolism , RNA, Untranslated/metabolism , RNA/metabolism , Animals , Base Sequence , COS Cells , Chlorocebus aethiops , HEK293 Cells , Humans , Methyltransferases/genetics , Molecular Sequence Data , RNA/genetics , RNA, Untranslated/genetics , Transcriptome , Transfection
12.
Dev Biol ; 371(2): 170-9, 2012 Nov 15.
Article En | MEDLINE | ID: mdl-22960235

We describe the internal organization of murine embryoid bodies (EBs) in terms of the structures and cell types formed as Oct4 expression becomes progressively lost. This is done by making the EBs from iPS cells carrying a novel Oct4 reporter (Oct4-MerCreMer;mTmG) which is inducible, sensitive, and permanent in all cellular progeny. When these EBs are treated with tamoxifen, the Oct4 expressing cells switch from a red to a green fluorescence color, and this is maintained thereafter by all their progeny. We show that there is no specific pattern in which Oct4 is downregulated, rather it appears to be spatially random. Many of the earliest cells to lose Oct4 expression stain positive for markers of visceral endoderm (DAB2, α-fetoprotein (AFP), HNF4). These are randomly located, although if endoderm differentiation is allowed to commence before EB formation then an external layer is formed. This is true both of EBs made from the reporter iPS cells, or from an embryo-derived mouse ES line (R1 cells). Markers of the early body axis, Brachyury (BRA) and FOXA2, usually showed a concentration of positive cells in one region of the EB, but the morphology is not predictable and there are also scattered cells expressing these markers. These patterns are similar in R1 cells. Use of the Oct4 reporter showed a difference between BRA and FOXA2. BRA, which marks the early mesoderm, node and notochord, arises in Oct4 expressing cells on days 3-4. FOXA2, which marks the floor plate of the neural tube and definitive endoderm, as well as the node and notochord, arises at the same time but mostly in cells that have already lost Oct4 expression. Several clumps of cardiomyocytes are visible by days 7-8 of EB development, both in our iPS cells and in R1 cells. Using the Oct4 reporter we show that the cells forming these clumps lose Oct4 expression between days 3 and 5. Overall, our results indicate that EBs recapitulate normal development quite well in terms of the tempo of events and the appearance of specific markers, but they do not resemble embryos in terms of their morphology.


Embryoid Bodies/cytology , Octamer Transcription Factor-3/genetics , Animals , Cell Differentiation , Down-Regulation , Embryoid Bodies/metabolism , Fetal Proteins/genetics , Fetal Proteins/metabolism , Gene Expression Regulation, Developmental , Genes, Reporter , Hepatocyte Nuclear Factor 3-beta/genetics , Hepatocyte Nuclear Factor 3-beta/metabolism , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Mice , Octamer Transcription Factor-3/metabolism , T-Box Domain Proteins/genetics , T-Box Domain Proteins/metabolism
...