Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Article En | MEDLINE | ID: mdl-33649219

Infiltration of tumor-promoting immune cells is a strong driver of tumor progression. Especially the accumulation of macrophages in the tumor microenvironment is known to facilitate tumor growth and to correlate with poor prognosis in many tumor types. TAp73, a member of the p53/p63/p73 family, acts as a tumor suppressor and has been shown to suppress tumor angiogenesis. However, what role TAp73 has in regulating immune cell infiltration is unknown. Here, we report that low levels of TAp73 correlate with an increased NF-κB-regulated inflammatory signature in breast cancer. Furthermore, we show that loss of TAp73 results in NF-κB hyperactivation and secretion of Ccl2, a known NF-κB target and chemoattractant for monocytes and macrophages. Importantly, TAp73-deficient tumors display an increased accumulation of protumoral macrophages that express the mannose receptor (CD206) and scavenger receptor A (CD204) compared to controls. The relevance of TAp73 expression in human breast carcinoma was further accentuated by revealing that TAp73 expression correlates negatively with the accumulation of protumoral CD163+ macrophages in breast cancer patient samples. Taken together, our findings suggest that TAp73 regulates macrophage accumulation and phenotype in breast cancer through inhibition of the NF-κB pathway.


Breast Neoplasms/immunology , NF-kappa B/immunology , Signal Transduction/immunology , Tumor Microenvironment/immunology , Tumor Protein p73/immunology , Tumor-Associated Macrophages/immunology , Animals , Antigens, CD/immunology , Antigens, Differentiation, Myelomonocytic/immunology , Breast Neoplasms/pathology , Chemokine CCL2/immunology , Female , Humans , Membrane Glycoproteins/immunology , Mice , Receptors, Cell Surface/immunology , Receptors, Immunologic/immunology , Scavenger Receptors, Class A/immunology , Tumor-Associated Macrophages/pathology
2.
Oncogene ; 37(27): 3729-3739, 2018 07.
Article En | MEDLINE | ID: mdl-29628507

Cellular responses to low oxygen conditions are mainly regulated by the Hypoxia-inducible factors (HIFs). Induction of HIF-1α in tumor cells activates the angiogenic switch and allows for metabolic adaptations. HIF-1α protein levels are tightly regulated through ubiquitin-mediated proteosomal degradation; however, high levels of HIF-1α is a common feature in many solid tumors and is thought to enhance cancer cell proliferation, migration, and survival. Here, we report that the oncogenic p73 isoform, ∆Np73, increases HIF-1α protein stability. We found that ∆Np73 represses expression of genes encoding subunits of the ECV complex, in particular Elongin C, Elongin B, Cullin 2, and Rbx1. The ECV complex is an E3 ligase complex responsible for polyubiquitinating HIF-1α. Loss of ∆Np73 increases ubiquitination of HIF-1α, leading to its degradation via the proteosomal pathway, and subsequent decrease of HIF-1α target genes. Taken together, our data demonstrates that high levels of ∆Np73 stabilize HIF-1α protein, allowing for it to accumulate and further potentiating its transcriptional activity and supporting tumor progression.


Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Tumor Protein p73/genetics , Tumor Protein p73/metabolism , Ubiquitin-Protein Ligases/metabolism , Animals , Carrier Proteins/biosynthesis , Cell Hypoxia/physiology , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Cell Survival/genetics , Cullin Proteins/biosynthesis , Elongin/biosynthesis , Humans , MCF-7 Cells , Mice , Mice, Nude , RNA Interference , RNA, Small Interfering/genetics , Ubiquitination/genetics
3.
Cell Oncol (Dordr) ; 40(6): 631-638, 2017 Dec.
Article En | MEDLINE | ID: mdl-28677036

PURPOSE: Multidrug resistance (MDR) is a major cause of treatment failure. In cancer cells, MDR is often caused by an increased efflux of therapeutic drugs mediated by an up-regulation of ATP binding cassette (ABC) transporters. It has previously been shown that oncogenic ΔNp73 plays an important role in chemo-resistance. Here we aimed at unraveling the role of ΔNp73 in regulating multidrug resistance in breast cancer and melanoma cells. METHODS: KEGG pathway analysis was used to identify pathways enriched in breast cancer samples with a high ΔNp73 expression. We found that the ABC transporter pathway was most enriched. The expression of selected ABC transporters was analyzed using qRT-PCR upon siRNA/shRNA-mediated knockdown or exogenous overexpression of ΔNp73 in the breast cancer-derived cell lines MCF7 and MDA-MB-231, as well as in primary melanoma samples and in the melanoma-derived cell line SK-MEL-28. The ability to efflux doxorubicin and the concomitant effects on cell proliferation were assessed using flow cytometry and WST-1 assays. RESULTS: We found that high ΔNp73 levels correlate with a general up-regulation of ABC transporters in breast cancer samples. In addition, we found that exogenous expression of ΔNp73 led to an increase in the expression of ABCB1 and ABCB5 in the breast cancer-derived cell lines tested, while knocking down of ΔNp73 resulted in a reduction in ABCB1 and ABCB5 expression. In addition, we found that ΔNp73 reduction leads to an intracellular retention of doxorubicin in MDA-MB-231 and MCF7 cells and a concomitant decrease in cell proliferation. The effect of ΔNp73 on ABCB5 expression was further confirmed in metastases from melanoma patients and in the melanoma-derived cell line SK-MEL-28. CONCLUSIONS: Our data support a role for ΔNp73 in the multidrug-resistance of breast cancer and melanoma cells.


ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Breast Neoplasms/metabolism , Melanoma/metabolism , Tumor Protein p73/metabolism , ATP Binding Cassette Transporter, Subfamily B/genetics , ATP Binding Cassette Transporter, Subfamily B/metabolism , ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , Blotting, Western , Breast Neoplasms/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Doxorubicin/pharmacology , Drug Resistance, Neoplasm/genetics , Female , Gene Expression Regulation, Neoplastic/genetics , Humans , MCF-7 Cells , Melanoma/genetics , Real-Time Polymerase Chain Reaction , Tumor Protein p73/genetics
4.
Proc Natl Acad Sci U S A ; 112(1): 220-5, 2015 Jan 06.
Article En | MEDLINE | ID: mdl-25535357

The p53-family member TAp73 is known to function as a tumor suppressor and regulates genomic integrity, cellular proliferation, and apoptosis; however, its role in tumor angiogenesis is poorly understood. Here we demonstrate that TAp73 regulates tumor angiogenesis through repression of proangiogenic and proinflammatory cytokines. Importantly, loss of TAp73 results in highly vascularized tumors, as well as an increase in vessel permeability resulting from disruption of vascular endothelial-cadherin junctions between endothelial cells. In contrast, loss of the oncogenic p73 isoform ΔNp73 leads to reduced blood vessel formation in tumors. Furthermore, we show that up-regulated ΔNp73 levels are associated with increased angiogenesis in human breast cancer and that inhibition of TAp73 results in an accumulation of HIF-1α and up-regulation of HIF-1α target genes. Taken together, our data demonstrate that loss of TAp73 or ΔNp73 up-regulation activates the angiogenic switch that stimulates tumor growth and progression.


Angiogenesis Inducing Agents/metabolism , Breast Neoplasms/blood supply , Breast Neoplasms/metabolism , Cytokines/metabolism , DNA-Binding Proteins/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Neovascularization, Pathologic/metabolism , Nuclear Proteins/metabolism , Tumor Suppressor Proteins/metabolism , Animals , Breast Neoplasms/pathology , Cadherins/metabolism , Cell Hypoxia , Cell Line, Transformed , Cell Proliferation , Endothelial Cells/metabolism , Female , Gene Expression Regulation , Humans , Inflammation/genetics , Inflammation/pathology , Mice , Neovascularization, Pathologic/pathology , Neovascularization, Physiologic , Permeability , Protein Isoforms/metabolism , Tumor Protein p73 , Zebrafish
...