Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Front Chem ; 12: 1396105, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38974991

RESUMEN

We previously reported on the interaction of 10-chloro-7H-benzo[de]benzo[4,5]imidazo[2,1-a]isoquinolin-7-one (10-Cl-BBQ) with the Aryl hydrocarbon Receptor (AhR) and selective growth inhibition in breast cancer cell lines. We now report on a library of BBQ analogues with substituents on the phenyl and naphthyl rings for biological screening. Herein, we show that absence of the phenyl Cl of 10-Cl-BBQ to produce the simple BBQ molecule substantially enhanced the growth inhibitory effect with GI50 values of 0.001-2.1 µM in select breast cancer cell lines MCF-7, T47D, ZR-75-1, SKBR3, MDA-MB-468, BT20, BT474 cells, while having modest effects of 2.1-7 µM in other cell lines including HT29, U87, SJ-G2, A2780, DU145, BE2-C, MIA, MDA-MB-231 or normal breast cells, MCF10A (3.2 µM). The most potent growth inhibitory effect of BBQ was observed in the triple negative cell line, MDA-MB-468 with a GI50 value of 0.001 µM, presenting a 3,200-fold greater response than in the normal MCF10A breast cells. Additions of Cl, CH3, CN to the phenyl ring and ring expansion from benzoimidazole to dihydroquinazoline hindered the growth inhibitory potency of the BBQ analogues by blocking potential sites of CYP1 oxidative metabolism, while addition of Cl or NO2 to the naphthyl rings restored potency. In a cell-based reporter assay all analogues induced 1.2 to 10-fold AhR transcription activation. Gene expression analysis confirmed the induction of CYP1 oxygenases by BBQ. The CYP1 inhibitor α-naphthoflavone, and the SULT1A1 inhibitor quercetin significantly reduced the growth inhibitory effect of BBQ, confirming the importance of both phase I and II metabolic activation for growth inhibition. Conventional molecular modelling/docking revealed no significant differences between the binding poses of the most and least active analogues. More detailed DFT analysis at the DSD-PBEP86/Def-TZVPP level of theory could not identify significant geometric or electronic changes which would account for this varied AhR activation. Generation of Fukui functions at the same level of theory showed that CYP1 metabolism will primarily occur at the phenyl head group of the analogues, and substituents within this ring lead to lower cytotoxicity.

2.
ChemMedChem ; : e202400253, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38894585

RESUMEN

Twenty-five chimera compounds of Pitstop® 1 and 2 were synthesised and screened for their ability to block the clathrin terminal domain-amphiphysin protein-protein interaction (NTD-PPI using an ELISA) and clathrin mediated endocytosis (CME) in cells.  Library 1 was based on Pitstop 2, but no notable clathrin PPI or in-cell activity was observed.  With the Pitstop 1, 16 analogues were produced with 1,8-naphthalic imide core as a foundation.  Analogues with methylene spaced linkers and simple amides showed a modest to good range of PPI inhibition (7.6 to 42.5 mM, naphthyl 39 and 4-nitrophenyl 40 respectively) activity.  These data reveal the importance of the naphthalene sulfonate moiety, with no des-SO3 analogue displaying PPI inhibition.  This was consistent with the observed analogue docked poses within the clathrin terminal domain Site 1 binding pocket.  Further modifications targeted the naphthalene imide moiety, with the installation of 5-Br (45a), 5-OH (45c) and 5-propyl ether (45d) moieties.  Among them, the OH 45c and propyl ether 45d retained PPI inhibition, with propyl ether 45d being the most active with a PPI inhibition IC50 = 7.3 mM.  This is 2x more potent than Pitstop® 2 and 3x more potent than Pitstop 1.

3.
RSC Med Chem ; 15(5): 1686-1708, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38784470

RESUMEN

Tubulin plays a central role in mitosis and has been the target of multiple anticancer drugs, including paclitaxel. Herein two separate families of 2,3-dihydroquinazoline-4(1H)-ones and quinazoline-4(3H) ones, comprising 57 compounds in total, were synthesised. Screening against a broad panel of human cancer cell lines (HT29 colon, U87 and SJ-G2 glioblastoma, MCF-7 breast, A2780 ovarian, H460 lung, A431 skin, Du145 prostate, BE2-C neuroblastoma, and MIA pancreas) reveals these analogues to be broad spectrum cytotoxic compounds. Of particular note, 2-styrylquinazolin-4(3H)-one 51, 2-(4-hydroxystyryl)quinazolin-4(3H)-one 63, 2-(2-methoxystyryl)quinazolin-4(3H)-one 64 and 2-(3-methoxystyryl)quinazolin-4(3H)-one 65 and 2-(naphthalen-1-yl)-2,3-dihydroquinazolin-4(1H)-one 39 exhibited sub-µM potency growth inhibition values. Of these 1-naphthyl 39 has activity <50 nM against the HT29, U87, A2780, H460 and BE2-C cell lines. Molecular modelling of these compounds, e.g. 2-(naphthalen-1-yl)-2,3-dihydroquinazolin-4(1H)-one 39, 2-(2-methoxystyryl)quinazolin-4(3H)-one 64, 2-(3-methoxystyryl)quinazolin-4(3H)-one 65, and 2-(4-methoxystyryl)quinazolin-4(3H)-one 50 docked to the known tubulin polymerisation inhibitor sites highlighted well conserved interactions within the colchicine binding pocket. These compounds were examined in a tubulin polymerisation assay alongside the known tubulin polymerisation promotor, paclitaxel (69), and tubulin inhibitor, nocodazole (68). Of the analogues examined, indoles 43 and 47 were modest promotors of tubulin polymerisation, but less effective than paclitaxel. Analogues 39, 64, and 65 showed reduced microtubule formation consistent with tubulin inhibition. The variation in ring methoxy substituent with 50, 64 and 65, from o- to m- to p-, results in a concomitant reduction in cytotoxicity and a reduction in tubulin polymerisation, with p-OCH350 being the least active in this series of analogues. This presents 64 as a tubulin polymerisation inhibitor possessing novel chemotype and sub micromolar cytotoxicity. Naphthyl 39, with complete inhibition of tubulin polymerisation, gave rise to a sub 0.2 µM cell line cytotoxicity. Compounds 39 and 64 induced G2 + M cell cycle arrest indicative of inhibition of tubulin polymerisation, with 39 inducing an equivalent effect on cell cycle arrest as nocodazole (68).

4.
Int J Mol Sci ; 25(4)2024 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-38396859

RESUMEN

Kinetically inert platinum(IV) complexes are a chemical strategy to overcome the impediments of standard platinum(II) antineoplastic drugs like cisplatin, oxaliplatin and carboplatin. In this study, we reported the syntheses and structural characterisation of three platinum(IV) complexes that incorporate 5-benzyloxyindole-3-acetic acid, a bioactive ligand that integrates an indole pharmacophore. The purity and chemical structures of the resultant complexes, P-5B3A, 5-5B3A and 56-5B3A were confirmed via spectroscopic means. The complexes were evaluated for anticancer activity against multiple human cell lines. All complexes proved to be considerably more active than cisplatin, oxaliplatin and carboplatin in most cell lines tested. Remarkably, 56-5B3A demonstrated the greatest anticancer activity, displaying GI50 values between 1.2 and 150 nM. Enhanced production of reactive oxygen species paired with the decline in mitochondrial activity as well as inhibition of histone deacetylase were also demonstrated by the complexes in HT29 colon cells.


Asunto(s)
Antineoplásicos , Ácido Hidroxiindolacético/análogos & derivados , Profármacos , Humanos , Cisplatino/farmacología , Platino (Metal)/química , Oxaliplatino/farmacología , Carboplatino/farmacología , Carboplatino/química , Profármacos/química , Línea Celular Tumoral , Antineoplásicos/química
5.
RSC Med Chem ; 14(11): 2246-2267, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37974967

RESUMEN

From lead 1, (N-(4-((4-(3-(4-(3-methoxyphenyl)-1H-1,2,3-triazol-1-yl)propyl)piperazin-1-yl)sulfonyl)-phenyl)acetamide), a S100A2-p53 protein-protein interaction inhibitor based on an in silico modelling driven hypothesis, four focused libraries were designed and synthesised. Growth inhibition screening was performed against 16 human cancer cell lines including the pancreatic cell lines MiaPaCa2, BxPC3, AsPC-1, Capan-2, HPAC, PANC-1 and the drug resistant CFPAC1. Modification of 1's phenylacetamide moiety, gave Library 1 with only modest pancreatic cancer activity. Modification of the 3-OCH3Ph moiety (Library 2) gave 4-CH3 (26), 4-CH2CH3 (27), 4-CF3 (31) and 4-NO2 (32) with sterically bulky groups more active. A 4-CF3 acetamide replacement enhanced cytotoxicity (Library 3). The 4-C(CH3)336 resulted in a predicted steric clash in the S100A2-p53 binding groove, with a potency decrease. Alkyl moieties afforded more potent analogues, 34 (4-CH3) and 35 (CH2CH3), a trend evident against pancreatic cancer: GI50 3.7 (35; BxPC-3) to 18 (40; AsPC-1) µM. Library 4 analogues with a 2-CF3 and 3-CF3 benzenesulfonamide moiety were less active than the corresponding Library 3 analogues. Two additional analogues were designed: 51 (4-CF3; 4-OCH3) and 52 (4-CF3; 2-OCH3) revealed 52 to be 10-20 fold more active than 51, against the pancreatic cancer cell lines examined with sub-micromolar GI50 values 0.43 (HPAC) to 0.61 µM (PANC-1). MOE calculated binding scores for each pose are also consistent with the observed biological activity with 52. The obtained SAR data is consistent with the proposed interaction within the S100A2-p53 bonding groove.

6.
Cancers (Basel) ; 15(9)2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37173934

RESUMEN

Developing new and versatile platinum(IV) complexes that incorporate bioactive moieties is a rapidly evolving research strategy for cancer drug discovery. In this study, six platinum(IV) complexes (1-6) that are mono-substituted in the axial position with a non-steroidal anti-inflammatory molecule, naproxen or acemetacin, were synthesised. A combination of spectroscopic and spectrometric techniques confirmed the composition and homogeneity of 1-6. The antitumour potential of the resultant complexes was assessed on multiple cell lines and proved to be significantly improved compared with cisplatin, oxaliplatin and carboplatin. The platinum(IV) derivatives conjugated with acemetacin (5 and 6) were determined to be the most biologically potent, demonstrating GI50 values ranging between 0.22 and 250 nM. Remarkably, in the Du145 prostate cell line, 6 elicited a GI50 value of 0.22 nM, which is 5450-fold more potent than cisplatin. A progressive decrease in reactive oxygen species and mitochondrial activity was observed for 1-6 in the HT29 colon cell line, up to 72 h. The inhibition of the cyclooxygenase-2 enzyme was also demonstrated by the complexes, confirming that these platinum(IV) complexes may reduce COX-2-dependent inflammation and cancer cell resistance to chemotherapy.

7.
J Med Chem ; 65(24): 16481-16493, 2022 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-36480933

RESUMEN

A novel platinum(II) complex 47OMESS(II) and its platinum(IV) derivative 47OMESS(IV) were synthesized and characterized. Cytotoxicity studies against mesenchymal cells (MCs) and lung (A549), breast (MDA-MB-231), and melanoma (A375) cancer cells demonstrated 7-20-fold superior activity for both complexes relative to cisplatin. Remarkably, 47OMESS(IV) demonstrated 17-22-fold greater selectivity toward the cancerous cells compared to the non-cancerous MCs. Western blot analysis on A549 cells showed the involvement of the intrinsic apoptotic pathway. Cellular fractionation and uptake experiments in A549 cells using ICP-mass spectrometry (MS) indicated that 47OMESS(II) and 47OMESS(IV) cross the cellular membrane predominantly via active transport mechanisms. The significant improvement in selectivity that is exhibited by 47OMESS(IV) is reported for the first time for this class of complexes.


Asunto(s)
Antineoplásicos , Platino (Metal) , Humanos , Platino (Metal)/química , Antineoplásicos/farmacología , Antineoplásicos/química , Cisplatino/farmacología , Apoptosis , Células A549 , Línea Celular Tumoral
8.
Pharmaceutics ; 14(12)2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36559273

RESUMEN

Four platinum(IV) prodrugs incorporating a biotin moiety to selectively target cancer cells were synthesised, characterised, and their biological activity assessed. All complexes exhibited exceptional in vitro cytotoxicity against a panel of cancer cell lines, with [Pt(5,6-dimethyl-1,10-phenanthroline)(1S,2S-diaminocyclohexane)(biotin)(hydroxido)](NO3)2, (2) exhibiting the lowest GI50 of 4 nM in the prostate Du145 cancer cell line. Each complex displayed significantly enhanced activity compared to cisplatin, with 2 being 1000-fold more active in the HT29 colon cancer cell line. Against the MCF-7 breast cancer cell line, in which high levels of biotin receptors are expressed, 2, [Pt(4,7-dimethoxy-1,10-phenanthroline)(1S,2S-diaminocyclohexane)(biotin)(hydroxido)](NO3)2, (3), and [Pt(5-methyl-1,10-phenanthroline)(1S,2S-diaminocyclohexane)(biotin)(hydroxido)](NO3)2, (4) exhibited enhanced activity compared to their platinum(II) cores, with 4 being 6-fold more active than its platinum(II) precursor. Furthermore, 3 exhibited 3-fold greater selectivity towards MCF-7 breast cancer cells compared to MCF10A breast healthy cells, and this was further confirmed by platinum uptake studies, which showed 3 to have almost 3-fold greater uptake in MCF-7 cells, compared to MCF10A cells. The results show that lipophilicity and selectivity both contributed to the cellular uptake of 1-4; however, this was not always translated to the observed cytotoxicity.

9.
Molecules ; 27(20)2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36296713

RESUMEN

A new series of cytotoxic platinum(IV) complexes (1-8) incorporating halogenated phenylacetic acid derivatives (4-chlorophenylacetic acid, 4-fluorophenylacetic acid, 4-bromophenylacetic acid and 4-iodophenylacetic acid) were synthesised and characterised using spectroscopic and spectrometric techniques. Complexes 1-8 were assessed on a panel of cell lines including HT29 colon, U87 glioblastoma, MCF-7 breast, A2780 ovarian, H460 lung, A431 skin, Du145 prostate, BE2-C neuroblastoma, SJ-G2 glioblastoma, MIA pancreas, the ADDP-resistant ovarian variant, and the non-tumour-derived MCF10A breast line. The in vitro cytotoxicity results confirmed the superior biological activity of the studied complexes, especially those containing 4-fluorophenylacetic acid and 4-bromophenylacetic acid ligands, namely 4 and 6, eliciting an average GI50 value of 20 nM over the range of cell lines tested. In the Du145 prostate cell line, 4 exhibited the highest degree of potency amongst the derivatives, displaying a GI50 value of 0.7 nM, which makes it 1700-fold more potent than cisplatin (1200 nM) and nearly 7-fold more potent than our lead complex, 56MESS (4.6 nM) in this cell line. Notably, in the ADDP-resistant ovarian variant cell line, 4 (6 nM) was found to be almost 4700-fold more potent than cisplatin. Reduction reaction experiments were also undertaken, along with studies aimed at determining the complexes' solubility, stability, lipophilicity, and reactive oxygen species production.


Asunto(s)
Antineoplásicos , Glioblastoma , Neoplasias Ováricas , Humanos , Femenino , Platino (Metal) , Cisplatino/química , Línea Celular Tumoral , Especies Reactivas de Oxígeno , Antineoplásicos/farmacología , Antineoplásicos/química , Fenilacetatos
10.
3 Biotech ; 12(10): 257, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36068843

RESUMEN

This study aimed to determine the phytochemical, antioxidant, and anticancer activities of the crude extract and its fractions of Cupaniopsis anacardioides. The results showed that total phenolic content (TPC), their secondary metabolites (flavonoids-TFC; proanthocyanidins-TPro), and antioxidant activity were significantly different between the crude extract and its fractions. The butanol fraction (F3) had the highest levels of TPC, TFC, and TPro, followed by the crude extract, aqueous fraction (F4), dichloromethyl fraction (F2), and hexane fraction (F1). High-Pressure Liquid Chromatography (HPLC) analysis revealed 14 major bioactive compounds were identified in the C. anacardioides extract. Further analysis showed F3 fraction contained the highest levels of the major bioactive compounds, while F1 fraction had the lowest. A similar pattern was observed for antioxidant activities. The crude extract, F3 and F4 fractions were further tested for cytotoxicity against 10 cancer cell lines, including HT29 (colon); U87, SJG2 (glioblastoma); MCF-7 (Breast); A2780 (ovarian); H460 (lung); A431 (skin); Du145 (prostate); BE2-C (neuroblastoma); MIA PaCa-2 (pancreas); and one non-tumour-derived normal breast cell line (MCF10A). Except for Du145 (prostate), the crude extract, F3 and F4 fractions inhibited the cancer cell lines at 100 µg/mL, with F3 possessing greater activity against these cancer cell lines. Future studies are recommended to isolate and identify the major bioactive compounds of the F3 fraction, and further tested their impact against cancer cell lines. This could identify the potential of anticancer agents from C. anacardioides.

11.
Int J Mol Sci ; 23(18)2022 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-36142383

RESUMEN

The DNA-alkylating derivative chlorambucil was coordinated in the axial position to atypical cytotoxic, heterocyclic, and non-DNA coordinating platinum(IV) complexes of type, [PtIV(HL)(AL)(OH)2](NO3)2 (where HL is 1,10-phenanthroline, 5-methyl-1,10-phenanthroline or 5,6-dimethyl-1,10-phenanthroline, AL is 1S,2S-diaminocyclohexane). The resultant platinum(IV)-chlorambucil prodrugs, PCLB, 5CLB, and 56CLB, were characterized using high-performance liquid chromatography, nuclear magnetic resonance, ultraviolet-visible, circular dichroism spectroscopy, and electrospray ionization mass spectrometry. The prodrugs displayed remarkable antitumor potential across multiple human cancer cell lines compared to chlorambucil, cisplatin, oxaliplatin, and carboplatin, as well as their platinum(II) precursors, PHENSS, 5MESS, and 56MESS. Notably, 56CLB was exceptionally potent in HT29 colon, Du145 prostate, MCF10A breast, MIA pancreas, H460 lung, A2780, and ADDP ovarian cell lines, with GI50 values ranging between 2.7 and 21 nM. Moreover, significant production of reactive oxygen species was detected in HT29 cells after treatment with PCLB, 5CLB, and 56CLB up to 72 h compared to chlorambucil and the platinum(II) and (IV) precursors.


Asunto(s)
Antineoplásicos , Neoplasias Ováricas , Profármacos , Antineoplásicos/química , Antineoplásicos/farmacología , Carboplatino , Línea Celular Tumoral , Clorambucilo/farmacología , Cisplatino/química , Femenino , Humanos , Masculino , Compuestos Organoplatinos/química , Compuestos Organoplatinos/farmacología , Oxaliplatino , Platino (Metal)/química , Profármacos/química , Profármacos/farmacología , Especies Reactivas de Oxígeno
12.
Molecules ; 27(11)2022 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-35684388

RESUMEN

Tetrachlorinated phthalimide analogues bearing a boron-pinacolate ester group were synthesised via two synthetic routes and evaluated in their glycosidase modulating and anticancer properties, with a view to use them in boron neutron capture therapy (BNCT), a promising radiation type for cancer, as this therapy does little damage to biological tissue. An unexpected decarbonylation/decarboxylation to five 2,3,4,5-tetrachlorobenzamides was observed and confirmed by X-ray crystallography studies, thus, giving access to a family of borylated 2,3,4,5-tetrachlorobenzamides. Biological evaluation showed the benzamide drugs to possess good to weak potencies (74.7-870 µM) in the inhibition of glycosidases, and to have good to moderate selectivity in the inhibition of a panel of 18 glycosidases. Furthermore, in the inhibition of selected glycosidases, there is a core subset of three animal glycosidases, which is always inhibited (rat intestinal maltase α-glucosidase, bovine liver ß-glucosidase and ß-galactosidase). This could indicate the involvement of the boron atom in the binding. These glycosidases are targeted for the management of diabetes, viral infections (via a broad-spectrum approach) and lysosomal storage disorders. Assays against cancer cell lines revealed potency in growth inhibition for three molecules, and selectivity for one of these molecules, with the growth of the normal cell line MCF10A not being affected by this compound. One of these molecules showed both potency and selectivity; thus, it is a candidate for further study in this area. This paper provides numerous novel aspects, including expedited access to borylated 2,3,4,5-tetrachlorophthalimides and to 2,3,4,5-tetrachlorobenzamides. The latter constitutes a novel family of glycosidase modulating drugs. Furthermore, a greener synthetic access to such structures is described.


Asunto(s)
Terapia por Captura de Neutrón de Boro , Neoplasias , Animales , Boro/química , Boro/farmacología , Compuestos de Boro/farmacología , Bovinos , Glicósido Hidrolasas , Ratas
13.
Pharmaceutics ; 14(4)2022 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-35456621

RESUMEN

Platinum(IV) prodrugs of the [Pt(PL)(AL)(COXi)(OH)]2+ type scaffold (where PL is 1,10-phenanthroline or 5,6-dimethyl-1,10-phenanthroline, AL is 1S,2S-diaminocyclohexane, and COXi is a COX inhibitor, either indomethacin or aspirin) were synthesised and characterised, and their biological activity was explored. MTT assays showed that these complexes exhibit outstanding activity against a range of cancer cell lines, and nanomolar activities were observed. The most potent complex, 4, exhibited a GI50 of 3 nM in the Du145 prostate cancer cell line and was observed to display a 1614-fold increased activity against the HT29 colon cancer cell line relative to cisplatin. ICP-MS studies showed a linear correlation between increased cellular accumulation of the complexes and increased cytotoxicity, while an enzyme immunoassay showed that 1 and 2 inhibited COX-2 at 14 and 1.4 µM, respectively, which is comparable to the inhibition exhibited by indomethacin. These results suggest that while the cytotoxicity of prodrugs 1-4 was influenced by cellular uptake, it was not entirely dependent on either COX inhibition or lipophilicity.

14.
Bioorg Med Chem Lett ; 61: 128591, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35114371

RESUMEN

Virtual screening identified N-(6-((4-bromobenzyl)amino)hexyl)-3,5-bis(trifluoromethyl)benzenesulfonamide (1) a lead compound that bound to the S100A2-p53 binding groove. S100A2 is a Ca2+ binding protein with implications in cell signaling and is known to be upregulated in pancreatic cancer. It is a validated pancreatic cancer drug target. Lead 1, inhibited the growth of the MiaPaCa-2 pancreatic cancer cell line (GI50 = 2.97 µM). Focused compound libraries were developed to explore the SAR of this compound class with 4 libraries and 43 compounds total. Focused library (Library 1) development identified lipophillic sulfonamides as preferred for MiaPaCa-2 activity, with -CF3 and -C(CH3)3 substituents well tolerated (MiaPaCa-2 GI50 < 6 µM). Contraction of the hexylamino spacer to ethyl (Library 2) and propyl (Library 3) proved beneficial to activity against a broad spectrum panel of cancer cell lines: HT29 (lung), MCF-7 (breast), A2780 (ovarian), H460 (colon), A431 (skin), Du145 (prostate), BE2-C (neuroblastoma), U87 and SJ-G2 (glioblastoma) (cohort-1); and a pancreatic cancer cell line panel: MiaPaCa-2, BxPC-3, AsPC-1, Capan-2, HPAC and PANC-1 (cohort-2). With a marked preference for a propyl linker the observed GI50 values ranged from 1.4 to 30 µM against cohort-1 and 1.4-30 µM against cohort-2 cell lines. In Library 4 the terminal aromatic moiety was explored with 4-substituted analogues preferred (with activity of 48 (4-Cl) > 47 (3-Cl) > 46 (2-Cl)) against the cell lines examined. The introduction of bulky aromatic moieties was well tolerated, e.g. dihydrobenzo[b][1,4]dioxine (51) returned cohort-2 GI50 values of 1.2-3.4 µM. In all instances the observed docked binding poses and binding scores were consistent with the observed cytotoxicity. This in turn supports, but does not prove, that these analogues function via S100A2-p53 binding groove inhibition.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias Pancreáticas/tratamiento farmacológico , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Estructura Molecular , Neoplasias Pancreáticas/patología , Relación Estructura-Actividad
15.
ChemMedChem ; 17(1): e202100560, 2022 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-34590434

RESUMEN

Five focused libraries of pyrimidine-based dynamin GTPase inhibitors, in total 69 compounds were synthesised, and their dynamin inhibition and broad-spectrum cytotoxicity examined. Dynamin plays a crucial role in mitosis, and as such inhibition of dynamin was expected to broadly correlate with the observed cytotoxicity. The pyrimidines synthesised ranged from mono-substituted to trisubstituted. The highest levels of dynamin inhibition were noted with di- and tri- substituted pyrimidines, especially those with pendent amino alkyl chains. Short chains and simple heterocyclic rings reduced dynamin activity. There were three levels of dynamin activity noted: 1-10, 10-25 and 25-60 µM. Screening of these compounds in a panel of cancer cell lines: SW480 (colon), HT29 (colon), SMA (spontaneous murine astrocytoma), MCF-7 (breast), BE2-C (glioblastoma), SJ-G2 (neuroblastoma), MIA (pancreas), A2780 (ovarian), A431 (skin), H460 (lung), U87 (glioblastoma) and DU145 (prostate) cell lines reveal a good correlation between the observed dynamin inhibition and the observed cytotoxicity. The most active analogues (31 a,b) developed returned average GI50 values of 1.0 and 0.78 µM across the twelve cell lines examined. These active analogues were: N2 -(3-dimethylaminopropyl)-N4 -dodecyl-6-methylpyrimidine-2,4-diamine (31 a) and N4 -(3-dimethylaminopropyl)-N2 -dodecyl-6-methylpyrimidine-2,4-diamine (31 b).


Asunto(s)
Antineoplásicos/farmacología , Citotoxinas/farmacología , Dinaminas/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Pirimidinas/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Citotoxinas/síntesis química , Citotoxinas/química , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Dinaminas/metabolismo , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Humanos , Estructura Molecular , Pirimidinas/síntesis química , Pirimidinas/química , Relación Estructura-Actividad
16.
RSC Med Chem ; 12(6): 929-942, 2021 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-34263170

RESUMEN

We have identified specific dichlorophenylacrylonitriles as lead compounds in the development of novel anticancer compounds, notably, (Z)-N-(4-(2-cyano-2-(3,4-dichlorophenyl)vinyl)phenyl)acetamide (1) and ANI-7 (2). Herein we specifically probe the SAR associated with the terminal aromatic ring and associated cytoxicity in a broad range of human cancer cell lines. Synthesis of three focused libraries revealed a poor tolerance for electron withdrawing and donating moieties (Library A). A clear preference for hydrophobic substituents on a terminal piperazine moiety (Library B) with good levels of broad spectrum cytotoxicity, e.g. 13a (GI50 2.5-6.0 µM), as did the introduction of a methylene spacer with 13i (4-CH3PhCH2; GI50 1.5-4.5 µM). Removal of the aromatic moiety and installation of simple hydrophobic groups (Library C), in particular an adamantyl moiety, afforded highly active broad spectrum cytotoxic agents with GI50 values ranging from 1.7 µM (14k; 1-adamantyl) to 5.6 µM (14i; pyrrolidine). Within these libraries we note lung cancer selectivity, relative to normal cells, of 13h (fluoro substituted acrylonitrile, GI50 1.6 µM, 9.3-fold selective); the colorectal selectivity of 14h (methylpiperidine analogue, GI50 0.36 µM, 6.9-fold selective) and the breast cancer selectivity of 13f (nitrile substituted acrylonitrile, GI50 2.3-6.0 µM, up to 20-fold selective). The latter was confirmed as a novel AhR ligand and a CYP1A1 activating compound, that likely induces cell death following bioactivation; a phenomenon previously described in breast cancer cell populations.

17.
ChemMedChem ; 16(18): 2851-2863, 2021 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-34047071

RESUMEN

In silico approaches identified 1, N-(6-((4-bromo- benzyl)amino)hexyl)-3,5-bis(trifluoromethyl)benzene sulfonamide, as a potential inhibitor of the S100A2-p53 protein-protein interaction, a validated pancreatic cancer drug target. Subsequent cytotoxicity screening revealed it to be a 2.97 µM cell growth inhibitor of the MiaPaCa-2 pancreatic cell line. This is in keeping with our hypothesis that inhibiting this interaction would have an anti-pancreatic cancer effect with S100A2, the validated PC drug target. A combination of focused library synthesis (three libraries, 24 compounds total) and cytotoxicity screening identified a propyl alkyl diamine spacer as optimal; the nature of the terminal phenyl substituent had limited impact on observed cytotoxicity, whereas N-methylation was detrimental to activity. In total 15 human cancer cell lines were examined, with most analogues showing broad-spectrum activity. Near uniform activity was observed against a panel of six pancreatic cancer cell lines: MiaPaCa-2, BxPC-3, AsPC-1, Capan-2, HPAC and PANC-1. In all cases there was good to excellent correlation between the predicted docking pose in the S100A2-p53 binding groove and the observed cytotoxicity, especially in the pancreatic cancer cell line with high endogenous S100A2 expression. This supports S100A2 as a pancreatic cancer drug target.


Asunto(s)
Antineoplásicos/farmacología , Factores Quimiotácticos/antagonistas & inhibidores , Proteínas S100/antagonistas & inhibidores , Proteína p53 Supresora de Tumor/antagonistas & inhibidores , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Factores Quimiotácticos/metabolismo , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Simulación del Acoplamiento Molecular , Estructura Molecular , Proteínas S100/metabolismo , Relación Estructura-Actividad , Células Tumorales Cultivadas , Proteína p53 Supresora de Tumor/metabolismo
18.
ChemMedChem ; 16(18): 2864-2881, 2021 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-34047450

RESUMEN

In silico screening predicted 1 (N-(4-((4-(3-(4-(3-methoxyphenyl)-1H-1,2,3-triazol-1-yl)propyl)piperazin-1-yl) sulfonyl)-phenyl)acetamide) as an inhibitor of the S100A2-p53 protein-protein interaction. S100A2 is a validated pancreatic cancer drug target. In the MiaPaCa-2 pancreatic cell line, 1 was a ∼50 µM growth inhibitor. Synthesis of five focused compound libraries and cytotoxicity screening revealed increased activity from the presence of electron withdrawing moieties on the sulfonamide aromatic ring, with the 3,5-bis-CF3 Library 3 analogues the most active, with GI50 values of 0.91 (3-ClPh; 13 i; BxPC-3, Pancreas) to 9.0 µM (4-CH3 ; 13 d; PANC-1, Pancreas). Activity was retained against an expanded pancreatic cancer cell line panel (MiaPaCa-2, BxPC-3, AsPC-1, Capan-2, PANC-1 and HPAC) and the normal cell line MCF10A (breast). Bulky 4-disposed substituents on the terminal phenyl ring enhanced broad spectrum activity with growth inhibition values spanning 1.1 to 3.1 µM (4-C(CH3 )3 ; 13 e; BxPC-3 and AsPC-1 (pancreas), respectively). Central alkyl spacer contraction from propyl to ethyl proved detrimental to activity with Library 4 and 5.5- to 10-fold less cytotoxic than the propyl linked Library 2 and Library 3. The data herein was consistent with the predicted binding poses of the compounds evaluated. The highest levels of cytotoxicity were observed with those analogues best capable of adopting a near identical pose to the p53-peptide in the S100A2-p53 binding groove.


Asunto(s)
Antineoplásicos/farmacología , Factores Quimiotácticos/antagonistas & inhibidores , Proteínas S100/antagonistas & inhibidores , Triazoles/farmacología , Proteína p53 Supresora de Tumor/antagonistas & inhibidores , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Factores Quimiotácticos/metabolismo , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Simulación del Acoplamiento Molecular , Estructura Molecular , Proteínas S100/metabolismo , Relación Estructura-Actividad , Triazoles/síntesis química , Triazoles/química , Células Tumorales Cultivadas , Proteína p53 Supresora de Tumor/metabolismo
19.
ChemMedChem ; 16(9): 1499-1512, 2021 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-33300308

RESUMEN

To exploit the interaction of the aryl hydrocarbon receptor (AhR) pathway in developing breast-cancer-specific cytotoxic compounds, we examined the breast cancer selectivity and the docking pose of the AhR ligands (Z)-2-(2-aminophenyl)-1H-benzo[de]isoquinoline-1,3(2H)-dione (NAP-6; 5) and 10-chloro-7H-benzo[de]benzo[4,5]imidazo[2,1-a]isoquinolin-7-one (10-Cl-BBQ; 6). While the breast cancer selectivity of 5 in vitro is known, we discuss the SAR around this lead and, by using phenotypic cell-line screening and the MTT assay, show for the first time that 6 also presents with breast cancer selectivity, notably in the triple-negative (TN) receptor breast cancer cell line MDA-MB-468, the ER+ breast cancer cell lines T47D, ZR-75-1 and the HER2+ breast cancer cell line SKBR3 (GI50 values of 0.098, 0.97, 0.13 and 0.21 µM, respectively). Indeed, 6 is 55 times more potent in MDA-MB-468 cells than normal MCF10A breast cells (GI50 of 0.098 vs 5.4 µM) and more than 130 times more potent than in cell lines derived from pancreas, brain and prostate (GI50 of 0.098 vs 10-13 µM). Molecular docking poses of 5 and 6 together with analogue synthesis and phenotypic screening show the importance of the naphthalene moiety, and an ortho-disposed substituent on the N-phenyl moiety for biological activity.


Asunto(s)
Antineoplásicos/química , Bencimidazoles/química , Isoquinolinas/química , Receptores de Hidrocarburo de Aril/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacología , Bencimidazoles/metabolismo , Bencimidazoles/farmacología , Sitios de Unión , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Humanos , Isoquinolinas/metabolismo , Isoquinolinas/farmacología , Ligandos , Simulación del Acoplamiento Molecular , Fenotipo , Dominios Proteicos , Receptores de Hidrocarburo de Aril/metabolismo , Relación Estructura-Actividad
20.
ChemMedChem ; 15(6): 490-505, 2020 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-32012442

RESUMEN

Lead (Z)-N-(4-(2-cyano-2-(3,4-dichlorophenyl)vinyl)phenyl)acetamide, 1 showed MCF-7 GI50 =30 nM and 400-fold selective c.f. MCF10A (normal breast tissue). Acetamide moiety modification (13 a-g) to introduce additional hydrophobicity was favoured with MCF-7 breast cancer cell activity enhanced at 1.3 nM. Other analogues were potent against the HT29 colon cancer cell line at 23 nM. Textbook SAR data was observed in the MCF-7 cell line, in an MTT assay, via the ortho (17 a), meta (17 b) and para (13 f). The amino alcohol -OH moiety was pivotal, but no stereochemical preference noted. But, these data did not fit our homology modelling expectations. Aberrant MTT ((3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide) screening results and metabolic interference confirmed by sulforhodamine B (SRB) screening. Interfering analogues resulted in 120 and 80-fold CYP1A1 and CYP1A2 amplification, with no upregulation of SULT1A1. This is consistent with activation of the AhR pathway. Piperidine per-deuteration reduced metabolic inactivation. 3-OH / 4-OH piperidine analogues showed differential MTT and SRB activity supporting MTT assay metabolic inactivation. Data supports piperidine 3-OH, but not the 4-OH, as a CYP substrate. This family of ß-amino alcohol substituted 3,4-dichlorophenylacetonitriles show broad activity modulated via the AhR pathway. By SRB analysis the most potent analogue was 23 b, (Z)-3-(4-(3-(4-phenylpiperidin-1-yl)-2-hydroxypropoxy)phenyl)-2-(3,4-dichlorophenyl)-acrylonitrile.


Asunto(s)
Acrilonitrilo/farmacología , Amino Alcoholes/farmacología , Antineoplásicos/farmacología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/agonistas , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Receptores de Hidrocarburo de Aril/agonistas , Receptores de Hidrocarburo de Aril/metabolismo , Acrilonitrilo/análogos & derivados , Acrilonitrilo/química , Amino Alcoholes/química , Antineoplásicos/química , Línea Celular , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Humanos , Estructura Molecular , Fenotipo , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA