Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 4450, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38396018

RESUMEN

Quantum dots are promising candidates for telecom single photon sources due to their tunable emission across the different low-loss telecommunications bands, making them compatible with existing fiber networks. Their suitability for integration into photonic structures allows for enhanced brightness through the Purcell effect, supporting efficient quantum communication technologies. Our work focuses on InAs/InP QDs created via droplet epitaxy MOVPE to operate within the telecoms C-band. We observe a short radiative lifetime of 340 ps, arising from a Purcell factor of 5, owing to integration of the QD within a low-mode-volume photonic crystal cavity. Through in-situ control of the sample temperature, we show both temperature tuning of the QD's emission wavelength and a preserved single photon emission purity at temperatures up to 25K. These findings suggest the viability of QD-based, cryogen-free C-band single photon sources, supporting applicability in quantum communication technologies.

2.
Nanotechnology ; 33(6)2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34731846

RESUMEN

InAs quantum dots (QDs) are grown on an In0.53Ga0.47As interlayer and embedded in an InP(100) matrix. They are fabricated via droplet epitaxy (DE) in a metal organic vapor phase epitaxy (MOVPE) reactor. Formation of metallic indium droplets on the In0.53Ga0.47As lattice-matched layer and their crystallization into QDs is demonstrated for the first time in MOVPE. The presence of the In0.53Ga0.47As layer prevents the formation of an unintentional non-stoichiometric 2D layer underneath and around the QDs, via suppression of the As-P exchange. The In0.53Ga0.47As layer affects the surface diffusion leading to a modified droplet crystallization process, where unexpectedly the size of the resulting QDs is found to be inversely proportional to the indium supply. Bright single dot emission is detected via micro-photoluminescence at low temperature, ranging from 1440 to 1600 nm, covering the technologically relevant telecom C-band. Transmission electron microscopy investigations reveal buried quantum dots with truncated pyramid shape without defects or dislocations.

3.
Light Sci Appl ; 10(1): 125, 2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-34127643

RESUMEN

We investigated metal-organic vapor phase epitaxy grown (InGa)(AsSb)/GaAs/GaP Stranski-Krastanov quantum dots (QDs) with potential applications in QD-Flash memories by cross-sectional scanning tunneling microscopy (X-STM) and atom probe tomography (APT). The combination of X-STM and APT is a very powerful approach to study semiconductor heterostructures with atomic resolution, which provides detailed structural and compositional information on the system. The rather small QDs are found to be of truncated pyramid shape with a very small top facet and occur in our sample with a very high density of ∼4 × 1011 cm-2. APT experiments revealed that the QDs are GaAs rich with smaller amounts of In and Sb. Finite element (FE) simulations are performed using structural data from X-STM to calculate the lattice constant and the outward relaxation of the cleaved surface. The composition of the QDs is estimated by combining the results from X-STM and the FE simulations, yielding ∼InxGa1 - xAs1 - ySby, where x = 0.25-0.30 and y = 0.10-0.15. Noticeably, the reported composition is in good agreement with the experimental results obtained by APT, previous optical, electrical, and theoretical analysis carried out on this material system. This confirms that the InGaSb and GaAs layers involved in the QD formation have strongly intermixed. A detailed analysis of the QD capping layer shows the segregation of Sb and In from the QD layer, where both APT and X-STM show that the Sb mainly resides outside the QDs proving that Sb has mainly acted as a surfactant during the dot formation. Our structural and compositional analysis provides a valuable insight into this novel QD system and a path for further growth optimization to improve the storage time of the QD-Flash memory devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA