Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 26
1.
Toxicol In Vitro ; 97: 105803, 2024 May.
Article En | MEDLINE | ID: mdl-38431060

Dexamethasone (DEX) is a synthetic glucocorticoid widely used as pharmaceutical and usually exists in effluents with varying degrees of concentrations. In this study, cultivated Brain, ovary and testis cells from Arabian Sea bream, Acanthopagrus arabicus, were treated by DEX at concentrations of 0, 0.3, 3.0, 30.0 and 300.0 µg/ml for 48 h. The aromatase activity and steroid (17-ß-estradiol (E2), progesterone (P) and testosterone (T)) production by cells were measured at 12, 24 and 48 h of the experiment. The results showed that the sensitivity of cultivated ovarian, testicular and brain cells to DEX increased dose dependently. DEX was potent inhibitor of aromatase activity at specially 30.0 and 300.0 µg/ml in the cultivated ovarian and testicular cells at different sampling time. On the other hand, DEX was found to stimulate the aromatase activity of fish brain. DEX also decreased E2, P and T production by cultivated ovarian and testicular cells during the experiment. While, DEX caused an increase in the production of E2 and P by brain cells, which seems logical considering the stimulating effect of this drug on brain aromatase activity. In conclusion, results highlight that DEX is able to change the activity of aromatase, and disrupt the biosynthesis of estrogens and thus affect reproduction in fish.


Sea Bream , Male , Female , Animals , Sea Bream/metabolism , Aromatase/metabolism , Indian Ocean , Gonads , Estradiol/pharmacology , Steroids , Brain/metabolism , Cell Culture Techniques , Dexamethasone/toxicity
2.
Article En | MEDLINE | ID: mdl-34756986

Phenanthrene, a polycyclic aromatic hydrocarbon (PAH), is one of the endocrine disrupting chemicals (EDCs). The present study aimed to evaluate the effects of phenanthrene on histophysiology of thyroid in Arabian seabream (Acanthopagrus arabicus). In this regards, different concentrations of phenanthrene (2, 20 and 40 pg/gbw) were injected to Acanthopagrus arabicus and changes in thyroid tissue structure and the serum levels of triiodothyronine (T3) and Thyroxine (T4) were assessed. The experiment lasted 21 days. Alterations in thyroid tissue structure and T3 and T4 serum levels also were assessed in Acanthopagrus arabicus caught from different stations of the Persian Gulf (Jafari, Samail, Arvand, Zangi, Bahrakan). In addition, the concentration of phenanthrene was measured in the fish muscle and sediment samples from the stations. Phenanthrene concentration reached the maximum level in the muscle of all injected fish after 4 days and then decreased by the end of the experiment. The highest and lowest concentrations of phenanthrene were recorded in the fish muscle and sediment samples collected from Jafari and Bahrakan, respectively. The levels of T3 and T4 decreased dose dependently in phenanthrene-injected fish up to day 7 and then increased by the end of the experiment. The serum level of T3 and T4 in fish collected from different stations was as follows: Jafari

Perciformes/metabolism , Phenanthrenes/toxicity , Thyroid Gland/drug effects , Animals , Male , Muscle, Skeletal , Thyroid Gland/metabolism , Thyroxine/blood , Thyroxine/metabolism , Triiodothyronine/blood , Triiodothyronine/metabolism , Water Pollutants, Chemical/toxicity
3.
J Exp Zool B Mol Dev Evol ; 338(3): 155-169, 2022 05.
Article En | MEDLINE | ID: mdl-34813182

The respiratory trees present only in the class Holothuroidea and the rest of the echinoderms lack it. Only some holothurian species have the ability to regenerate their respiratory trees after autotomy. Therefore, respiratory trees could be considered as a suitable model to assess the regeneration mechanisms in animals. In the present study, the respiratory tree regeneration after posterior evisceration were examined in Holothuria parva during 75 days. Since autotomy reduces antioxidant defense in the organisms, in the present study alterations of antioxidant enzymes were also evaluated during the experiment. H. parva is the dominant intertidal species distributed in the north of the Persian Gulf. In the present study, H. parva ejected the left respiratory tree, the digestive tract and supportive mesenteries from the anus, about 1-2 min after potassium chloride injection. The closure of the opening at the posterior ends of the body was the first reaction to the injury. Seven days after evisceration, the small bud formed on the dorsal side of the cloaca which was covered with the coelomic epithelium of cloaca. The coelomic epithelium started to proliferate to undifferentiated cells on the apex of the buds. The primary respiratory tree consisted of the luminal cuboidal epithelium and thin connective tissue surrounded by the slender coelomic epithelium. This preliminary organ was observed at the apex of the buds, 13 days after evisceration. Gradually, myoepithelial cells arranged around a longitudinal axis and formed a circular muscle. The primitive branches of primary respiratory tree started to form 18 days after evisceration. Forty days after evisceration, the luminal epithelium of the respiratory tree had the same appearance as the intact luminal epithelium. The regenerated respiratory tree was histomorphologically very similar to an intact respiratory tree 56 days postevisceration, but unlike that, it was not yet wrapped around the intestine and was completely separate from it. Despite the development of the regenerating respiratory tree, no wrapping around the intestine was observed until the end of the experiment. According to the results, the activity of the catalase (CAT) and superoxide dismutase (SOD) in the muscle homogenate was significantly higher than the control 5 days after evisceration. The CAT and SOD levels gradually decreased in eviscerated animals. The lipid peroxidation level followed a decreasing trend in the eviscerated animals during the experiment. However, its value reduced to the control level at the end of the experiment.


Holothuria , Sea Cucumbers , Animals , Antioxidants , Holothuria/physiology , Superoxide Dismutase , Trees
4.
J Fish Biol ; 97(4): 938-952, 2020 Oct.
Article En | MEDLINE | ID: mdl-32506537

The present study aimed at assessing the annual reproductive cycle of female Arabian carpetshark, Chiloscyllium arabicum from the Persian Gulf by a macroscopic and microscopic evaluation of the reproductive tract. The annual cycle of gonadal steroids [17ß-estradiol (E2), progesterone (P4) and testosterone (T)] was also assessed in this shark. In total, 130 female C. arabicum were collected from the Bahrakan Creek (located northwest of the Persian Gulf) between January 2018 and March 2019. Females were oviparous with an external-type ovary and only one functional ovary. Five sexual maturity stages were recognized based on macroscopic and microscopic evaluation: Immature I (August-October), Immature II (November-January), Mature (February-March), Pregnant (April-May) and Spent (June-July). The structural changes in the oviducts, oviducal glands and uterus throughout the annual reproductive cycle were consistent with their roles in the egg movement, the egg capsule production and sperm storage. The plasma levels of the gonadal steroids were associated with morphological changes in the reproductive tract. E2 showed two detectable peaks during March (close to ovulation) and June (just before mating). P4 and T displayed a peak just before ovulation.


Gonadal Steroid Hormones/blood , Reproduction/physiology , Sharks/anatomy & histology , Sharks/physiology , Animals , Estradiol/blood , Female , Indian Ocean , Ovary/anatomy & histology , Oviducts/anatomy & histology , Ovulation , Progesterone/blood , Testosterone/blood , Uterus/anatomy & histology
5.
Fish Physiol Biochem ; 46(4): 1183-1197, 2020 Aug.
Article En | MEDLINE | ID: mdl-32166615

The present investigation aimed to use primary liver cell culture obtained from mullet, Liza klunzingeri, to evaluate the toxic effects of benzo[a]pyrene (BaP) and nonylphenol (NP) on the antioxidant defense system. Liver samples taken from 20 L. klunzingeri were digested with 0.1% collagenase IV. The digested cells were then moved to Leibovitz L-15 culture medium and incubated at 25 °C for 2 weeks. 10-5 mol/l of BaP and 10-4 mol/l of NP were considered as the half maximal inhibitory concentration (IC50). Cells were then incubated with L-15 medium containing BaP (0[control], 10-6,2 × 10-6,3 × 10-6 mol/l) and NP (0[control],10-5,2 × 10-5,3 × 10-5 mol/l), and sampling was performed after 6, 12, and 24 h of incubation for measurement of catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), lipid peroxidation (LPO), total antioxidant power, and total protein. The lowest concentration of BaP and NP did not have considerable toxic effects on cultivated hepatocytes. The activities of SOD, CAT, GPx, LPO, total antioxidant power, and total protein changed dose-dependently in cells treated with BaP and NP. In conclusion, based on the results, short-term exposure to BaP and NP induced the oxidative stress in cultivated liver cells of L. klunzingeri. The toxicity of both pollutants is mainly because of the induction of the reactive oxygen species (ROS), which lead to cell membrane disruption, damage of cellular metabolism, and interference with cellular macromolecules.


Benzo(a)pyrene/toxicity , Liver/drug effects , Oxidative Stress/drug effects , Phenols/toxicity , Smegmamorpha/metabolism , Analysis of Variance , Animals , Antioxidants , Catalase/metabolism , Cells, Cultured , Dose-Response Relationship, Drug , Glutathione Peroxidase/metabolism , Inhibitory Concentration 50 , Lipid Peroxidation/drug effects , Liver/cytology , Liver/enzymology , Liver/metabolism , Male , Superoxide Dismutase/metabolism
6.
J Appl Toxicol ; 40(7): 991-1003, 2020 07.
Article En | MEDLINE | ID: mdl-32103520

We assessed the toxic effects of benzo[a]pyrene (BaP) on cell viability, aromatase (Aro) activity and steroid production using ovarian and brain cell cultures obtained from Mullet, Liza klunzingeri. The brain and ovary were minced and digested, and the cells were suspended in Leibovitz's L-15 medium supplemented with 15% and 20% fetal bovine serum. The cell suspensions were seeded on 25-cm2 cell-culture flasks at 1 × 106 cells/mL and incubated at 25 °C for 2 weeks. A BaP concentration of 10-5 mol/L was accepted as the half-maximal inhibitory concentration. Ovarian and brain cells were exposed to different concentrations of BaP [0 (control), 10-6 , 2 × 10-6 , 3 × 10-6 mol/L] and incubated at 30 °C. At different sampling times (0, 12, 24 and 48 h) 40 ng/105 cells of 1,4,6-androstatriene-3,17-dione (ATD) was added to each well. Aro activity, 17ß-estradiol (E2) and ATD production were determined. The sensitivity of the cultivated ovarian and brain cells to BaP increased dose dependently. BaP was a potent inhibitor of Aro activity at 2 × 10-6 and 3 × 10-6 mol/L, both in the cultivated brain and ovarian cells at different sampling times, with 10-6 mol/L BaP found to be the least potent Aro inhibitor. E2 production decreased from cultivated ovarian and brain cells treated by different concentrations of BaP. In conclusion, BaP is able to change the activity of Aro and disrupt the biosynthesis of estrogens, and thus affects reproduction in fish.


Aromatase Inhibitors/metabolism , Aromatase/metabolism , Benzo(a)pyrene/toxicity , Brain/drug effects , Cell Survival/drug effects , Ovary/drug effects , Smegmamorpha/metabolism , Water Pollutants, Chemical/toxicity , Animals , Brain/metabolism , Cells, Cultured/drug effects , Female , Ovary/metabolism , Water Pollutants, Chemical/metabolism
8.
Chemosphere ; 226: 534-544, 2019 Jul.
Article En | MEDLINE | ID: mdl-30953898

Among the various toxicants discharged into aquatic environments, benzo (a) pyrene (BaP) has been shown to effect on the antioxidant system of fish and the evaluation of its impact on biota is of considerable concern. The aim of the present study was to use the primary hepatocyte culture obtained from the orange-spotted grouper, Epinephelus coioides, to evaluate the adverse effects of benzo (a) pyrene (BaP) on cell viability and liver antioxidant system. BaP was selected for its high ability to produce reactive oxygen species (ROS) and oxidative stress. The liver was minced by a scalpel and digested in the PBS solution with 0.1% collagenase IV at room temperature for 20 min. Then, the cell suspension was transferred to a plate contained an equal amount of Leibovitz's L-15 medium with 20% fetal bovine serum (FBS), 100 IU mL-1 of penicillin and 100 µg mL-1 streptomycin. 5 mL of cell suspension were plated into sterile 25 cm2 tissue culture flasks at the density of 1.5 × 106 cell/ml L-15 and incubated at 30 °C for two weeks. The medium was renewed after 24-48 h. The number of the liver cells was adjusted to 4 × 106 after two weeks. 10-4 mol l-1 was verified by MTT assay as the IC50 of BaP. Then, hepatocytes were exposed to three concentrations of BaP (10-5, 2 × 10-5, 3 × 10-5 mol L-1) and incubated for 24 h. Samples were collected after 6, 12 and 24 h and the amounts of SOD, CAT, GPx, LPO, LDH, AST, ALT, ALP and total protein were analyzed. The results showed that, 10-5 mol L-1 of BaP was not significantly toxic to cultivated hepatocytes, however, the sensitivity of cells to BaP increased in a dose-related pattern. The activity of the antioxidant enzymes (SOD, CAT and GPx) and liver enzymes (ALT, AST, ALP, LDH) significantly increased, though the amount of LPO, total antioxidant power and total protein decreased dose-dependently in BaP-exposed cells. In conclusion, according to the finding of the present study, BaP has a high potential to induce the oxidative stress in primary liver cell culture of E. coioides.


Antioxidants/analysis , Bass/metabolism , Benzo(a)pyrene/toxicity , Hepatocytes/metabolism , Liver/metabolism , Oxidative Stress/drug effects , Animals , Catalase/metabolism , Cell Survival/drug effects , Cells, Cultured , Glutathione/metabolism , Reactive Oxygen Species/metabolism , Seafood , Superoxide Dismutase/metabolism
9.
Cytotechnology ; 71(1): 261-266, 2019 Feb.
Article En | MEDLINE | ID: mdl-30600462

Regarding challenges in isolation and maintenance of cultured heart cells, introduction of new in vitro heart model that is stable and exhibits long-term spontaneously contracting cell aggregates (SCCs), whose electrophysiological properties are comparable to the human heart, is required. This research aimed to establish cardiac primary cells and to evaluate the effects of culture conditions. Also the effect of fish age on beating SCC and cardiac cell morphology were studied. Twelve healthy grass carps (Ctenopharyngodon idella) were divided into four groups based on their age. Non-enzymatic explant culture was used and heart explants were incubated at 21-31 °C for 60 days. After proliferation of the cardiac primary cells, changes in their morphology and their beatings were recorded. The results showed that the explants derived from different age of grass carp fish are fully viable and proliferative with formation of SCC for a long period of time. By increasing the number of adhered cells, the cardiac primary cells became more flat and elongated. Increasing the medium temperature and fetal bovine serum concentration in culture medium led to decline and enhancement in beat frequencies of heart cell aggregates, respectively. Also, grass carp heart explant had high potential in regeneration (especially in young fish) and thus high feasibility to generate stable long-term cultures. In general, it seems that explant culture of heart from grass carp can be considered as a promising tool in heart research area.

10.
Fish Shellfish Immunol ; 86: 125-134, 2019 Mar.
Article En | MEDLINE | ID: mdl-30453043

The severe decline in population of sturgeons due to pollution highlighted poor understanding about the immunotoxicological responses of sturgeons. This study was designed in three experiments to find out how nonylphenol (NP) interrupts some pro-inflammatory immune parameters in macrophages from Persian sturgeon (Acipencer persicous) as the oldest vertebrate model conserving intact innate immune system. After determination of IC50 values of NP (200 µM), some pro-inflammatory immune parameters and induced apoptosis in macrophages at low dose (10 nM) and high dose (100 nM) of NP and of 17ß estradiol (E2) (positive control) were determined after 6, 24 and 48 h of the exposure (as the first experiment). The two doses of NP induced pro-inflammatory reaction and apoptosis with strong correlations, whereas this result was observed more obviously in high dose of E2. In the second experiments, the macrophages were exposed to the two doses of NP along with estrogen receptor alpha (ERα) antagonist, which consequently decreased the induction of pro-inflammatory reactions. Similarly, in the third experiment, NF-KB and ERα antagonists were used and pro-inflammatory reactions decreased compared to the control group (P < 0.05). Decreasing correlation between immune parameters following the second and third experiments verified interaction between ERα and NF-KB pathways. Thus, NP could be immune disrupter and apoptosis inducer in sturgeon macrophages in vitro, even in low dose. For the first time, this study revealed that NP can induce pro-inflammatory reactions in macrophages derived from sturgeons.


Estrogen Receptor alpha/metabolism , Macrophages/drug effects , NF-kappa B/metabolism , Phenols/toxicity , Animals , Cells, Cultured , Estrogen Receptor alpha/antagonists & inhibitors , Fishes
11.
Toxicol Rep ; 5: 1120-1123, 2018.
Article En | MEDLINE | ID: mdl-30510904

Most of effluents discharged to the environment contain toxic contaminants such as aromatic compounds and heavy metals which are considered hazardous to the nature and living organisms. In this study, Bacillus subtilis resistant to anthracene and lead was isolated from Persian Gulf sediments. Biosurfactant production was demonstrated using three methods, drop collapse, blood agar and oil spreading. Evaluation of optical density by spectrophotometer showed the bacterial growth in presence of 30 mg/l of anthracene and 50 mg/l of lead. Considerable proportion of anthracene (69.95%) was reduced after 120 h and the maximum percentage of lead absorption (82%) was observed after 150 min. The results indicated that the isolated bacterium was capable of removing anthracene and lead.

12.
Cytotechnology ; 70(6): 1643-1654, 2018 Dec.
Article En | MEDLINE | ID: mdl-30306290

The aim of this research was a comparative study on the isolation and culture of head kidney macrophages derived from Acipenser persicous and Rutilus frisii kutum as teleost and chondrostei species of fish. The macrophages were isolated by density gradient sedimentation, followed by adherence to a plastic surface. They exhibited strong phagocytic activity against bacteria. The effect of cell density, incubation time, FBS percentage, pH and temperatures on the cell number and viability were determined and compared. Also, the effect of light/dark regimen on viability, adherence, release of reactive oxygen species (ROS) and nitric oxide (NO) in the macrophages was determined. The results showed that the Caspian kutum macrophages were more sensitive to FBS percentage and cell density whereas the Persian sturgeon macrophages were more sensitive to pH of the cell culture media. The adherence and viability of the macrophages from both fish species firstly increased (P < 0.05) after exposure to a light/dark regimen, but then significantly decreased as did ROS and NO productions. For the first time, this study has determined the optimal conditions for primary culture of macrophages derived from sturgeons, and shows the unique effect of light on the biology of fish immune cells.

13.
Toxicol Rep ; 5: 113-124, 2018.
Article En | MEDLINE | ID: mdl-29854583

The aim of this study was to assess the effects of fipronil insecticide on the Caspian kutum fish at different levels of biological organizations and to find possible relationship between these biomarkers. Different doses of fipronil (65, 130 and 200 mg/kg) were intraperitoneally administered to the fish for 2 weeks. After 7 and 14 days of exposure, alterations in organ-somatic index, tissue and DNA structure, oxidative stress and CYP1A gene expression in gill, liver, brain and kidney were studied. Determination of these parameters in the liver showed that the degree of tissue change (DTC), comet tail, superoxide dismutase (SOD) and relative CYP1A mRNA expression increased mostly in a time dependent manner whereas in the kidney increased mostly in a dose dependent manner. These parameters in the gill increased more in time and dose dependent manner. Apart from the changes in CYP1A expression and oxidative stress, no alterations was observed in the brain. Multiple regression analysis showed that the CYP1A had the most correlation with the organ-somatic index (R2 = 0.76) and comet tail (R2 = 0.89) in the liver, and with DTC (R2 = 0.93) and oxidative stress (R2 = 0.87) in the kidney. Generally, this study showed that CYP1A gene expression can be considered as one basic factor for fipronil toxicity in this fish. However, other possible factors also should be considered for future research.

14.
Toxicol Rep ; 5: 377-382, 2018.
Article En | MEDLINE | ID: mdl-29854607

Benzo[a]Pyrene (BaP) is a ubiquitous polycyclic aromatic hydrocarbon (PAH) that has been shown to disrupt the metabolism of thyroid hormone. Then, the present investigation aimed to study the effects of BaP on thyroid function in Liza abu. Fish were injected with 2, 10 and 25 mg/kg-bw of BaP. Samples were taken from blood, thyroid and muscle tissues at days 1, 2, 4, 7, and 14. Blood was evaluated for changes in the plasma levels of TSH, T3 and T4. Also, BaP bioaccumulation in the fish muscle was measured. Thyroid tissues were processed for routine histology. BaP concentration in the muscle of treated fish reached a maximum level after 4 days. Exposure of fish to BaP resulted in a significant decrease in T3 and T4 plasma level and increase in TSH concentration up to day 4. Also some pathological alterations were observed in BaP-exposed fish such as hemorrhage and increased number of large follicles with squamous epithelium. In conclusion, according to the results of the present investigation, short term exposure to sublethal concentrations of BaP significantly affected thyroid function in fish. The results revealed BaP ability to alter thyroid function.

15.
Fish Shellfish Immunol ; 72: 37-47, 2018 Jan.
Article En | MEDLINE | ID: mdl-29079206

In the present study, the apoptosis and tissue changes in the spleen, as well as humoral immune-related parameters, micronuclei (MN) induction in blood cells and Ethoxyresorufin-O-deethylase (EROD) activity were investigated in yellowfin seabream (Acanthopagrus latus) after short-term exposure to phenanthrene (Phe). The fish were intraperitoneally injected with different concentrations (2, 20 and 40 mg kg-1) of Phe and tissue and blood samples were collected 1, 4, 7 and 14 days after injection. The concentrations of Phe in the fish liver increased 4 days after the experiment. EROD activity showed a pattern consistent with Phe concentration in the liver. Apoptotic index in the spleen increased dose dependently in Phe-exposed fish. Exposure to Phe caused significant decrease in the plasma level of immunoglobulin M, phagocytic and respiratory burst activity after 4 days of exposure. The frequency of MN in the erythrocytes of the treated fish was significantly higher than control. The main pathological alterations in the spleen included the increase in melanomacrophage centers (MMCs), destroyed red blood cell and hemorrhage. The degree of tissue changes in the spleen of the exposed fish ranged from slight to moderate damage. The size and number of MMCs in the spleen were significantly higher in Phe-treated fish compared to the control. Our results showed that Phe could suppress immune responses in fish, induce cell apoptosis, histological changes in the spleen and MN formation. This may suggest those parameters consider as useful biomarkers for monitoring of the health status of fish during exposure to Phe.


Apoptosis , Erythrocytes/immunology , Immunity, Innate , Micronucleus Tests/veterinary , Perciformes/immunology , Phenanthrenes/adverse effects , Water Pollutants, Chemical/adverse effects , Animals , Biomarkers/metabolism , Cytochrome P-450 CYP1A1/metabolism , Fish Proteins/metabolism
16.
Toxicol Rep ; 4: 348-357, 2017.
Article En | MEDLINE | ID: mdl-28959659

Fipronil is an effective insecticide widely used in agriculture with potential ecotoxicological consequences. The median lethal dose (LD50) and concentration (LC50) of fipronil in 16.3 g Caspian white fish, Rutilus frisii kutum fingerlings were determined. To determine the LD50, a total of 133 fish were assigned to 19 tanks (7 fish/tank) including one control and 6 treatment groups (300, 450, 550, 650, 750, 850 mg/kg). Fish were injected intraperitoneally and monitored at 96 h. The LD50 of fipronil was 632 mg/kg suggesting it was slightly toxic to the Caspian white fish. To determine LC50, 114 fish were assigned to 19 tanks (6 fish/tank) including one control and 6 treatment groups (300, 400, 500, 600, 700, 800 µg/L). The LC50 of fipronil was 572 µg/L, which was highly toxic to the fish. The degree of tissue change (DTC) in vital organs from moribund fish exposed via waterborne exposure showed severe damage (DTC: 71 ± 52 for 700 µg/L) in the gill, including aneurisms, extensive fusion and necrosis. The fish exposed through the intraperitoneal route seemed to have severe lesions (DTC: 66 ± 50 for 750 mg/kg) in the kidney, involving hemorrhage, tubular degeneration and necrosis. The liver had no significant differences in DTC values between the two routes and showed pyknosis and sinusoid dilation. Hematoxylin and eosin staining did not show any histological alterations in the brain but nissl staining showed some alterations in distribution of purkinje cells. Generally, this study showed that the route of exposure to fipronil not only affects its acute toxicity but also determines the main target organs of toxicity and histopathological alterations in Caspian white fish.

17.
Chemosphere ; 186: 686-694, 2017 Nov.
Article En | MEDLINE | ID: mdl-28826128

The effect of phenanthrene (Phe) on induction of ethoxyresorufinO-deethylase (EROD) activity and oxidative stress was examined in immune organs of yellowfin seabream Acanthopagrus latus. Fish were treated with a single intraperitoneal injection at 2, 20, or 40 mg kg-1. The Phe concentration in spleen, EROD activity, superoxide dismutase (SOD) and catalase (CAT) activity, ascorbic acid (AsA), total glutathione (GSH), lipid peroxidation (LPO), and protein carbonylation (PC) levels in spleen and head kidney were assessed at one, four, seven, and 14 days post-injection. Dose response relationship was explored for data on day four. Phe concentration reached the highest observed level on day four, showed decline on day seven, and was undetectable at the end of trial. EROD activity in both organs followed the pattern of Phe level in all treated groups. Catalase and SOD activity at low Phe concentrations was significantly higher than controls, while LPO and PC level showed no differences from controls. In contrast, at 20 and 40 mg kg-1, CAT and SOD activity, an indicator of oxidative stress, was significantly lower than in untreated controls, while AsA, GSH, LPO, and PC levels were higher on days 4 and 7. No parameter of any treatment group in either organ tissue showed difference from control values at the end of the experiment. The SOD and CAT activity in both organs exhibited a biphasic (initial stimulatory effect) effect, whereas other parameters showed a monophasic effect in terms of dose-response. Results suggest that Phe induced CYP1A and antioxidant responses in immune organs.


Cytochrome P-450 CYP1A1/metabolism , Oxidative Stress/physiology , Phenanthrenes/toxicity , Sea Bream/physiology , Water Pollutants, Chemical/toxicity , Animals , Antioxidants/metabolism , Catalase/metabolism , Glutathione/metabolism , Glutathione Transferase/metabolism , Kidney/metabolism , Lipid Peroxidation/drug effects , Oxidation-Reduction , Phenanthrenes/metabolism , Protein Carbonylation , Sea Bream/immunology , Sea Bream/metabolism , Superoxide Dismutase/metabolism
18.
Mar Pollut Bull ; 122(1-2): 243-252, 2017 Sep 15.
Article En | MEDLINE | ID: mdl-28676171

The present study aimed to use primary liver cell culture derived from the orange-spotted grouper, Epinephelus coioides, to assess the toxic effects of nonylphenol (NP) on the hepatocyte viability and the liver antioxidant system. E. coioides was selected due to its commercial importance. NP was used in this study because of its high potential of producing oxidative stress due to increased reactive oxygen species (ROS). A liver of E. coioides was digested with PBS containing 0.1% collagenase IV. The digested cells were moved to Leibovitz L-15 culture medium with 20% fetal bovine serum (FBS), 100IUmL-1 penicillin, 100µgmL-1 streptomycin. Aliquots of cell suspension were seeded as a monolayer into sterile 25cm2 tissue culture flasks and incubated at 30°C for 14days. The medium, containing non-attached cells, was removed after 24 to 48h and a new medium was added. The IC50 of 10-4molL-1 was determined for nonylphenol using MTT assay. Cells were then incubated with L-15 medium containing 10-5, 2×10-5, 3×10-5molL-1 of NP and samples were taken after 6, 12 and 24h of incubation for analysis of LPO, SOD, CAT, GPx, LDH, AST, ALT, and ALP. Based on the results, the lowest concentration of NP was not markedly cytotoxic to primary hepatocytes and the cell sensitivity to NP increased dose-dependently. The activities of SOD, CAT and GPx decreased significantly, while activities of LPO, LDH, AST, ALT and ALP, increased significantly in a dose-related pattern in NP-treated cells. In conclusion, this study revealed that NP could induce the oxidative stress in cultivated hepatocytes of E. coioides during a short-term exposure. NP toxicity is mainly due to the induction of the reactive oxygen species (ROS), which lead to cell membrane disruption, damage of cellular metabolism, and interference with cellular macromolecules.


Fishes , Liver/drug effects , Oxidative Stress , Phenols/toxicity , Water Pollutants, Chemical/toxicity , Animals , Hepatocytes , Liver/cytology , Liver/enzymology
19.
Article En | MEDLINE | ID: mdl-28257924

The aim of the present investigation was to assess the immune status in yellowfin seabream (Acanthopagrus latus) exposed to different concentrations of phenanthrene (Phe) for 14days. In addition, the Phe accumulation in the fish muscle was measured during the experiment. Fish were injected with different concentrations (0, 2, 20 and 40mg/kg) of Phe and samples were taken from tissue and blood of fish 1, 4, 7 and 14days after injection. Exposure of fish to Phe caused a significant decrease in white blood cells, C3 and C4 levels, lysosomal membrane stability, lysozyme activity after 4days and antibacterial activity after 7days of the experiment. In contrast, cortisol level significantly increased after 4days. The concentration of Phe in fish muscle increased rapidly after 4days. The main tissue changes observed in the head kidney including increase in melanomacrophage centers (MMCs), empty spaces between cells and hemorrhage. The degree of tissue changes ranged from normal to moderate in Phe-treated fish. The size and number of MMCs in treated fish were significantly higher than control. In conclusion, Phe toxicity in yellowfin seabream can induce increased cortisol level, tissue changes and immune suppression.


Immune System/drug effects , Phenanthrenes/toxicity , Sea Bream/immunology , Water Pollutants, Chemical/toxicity , Animals , Bacteria/immunology , Complement C3/metabolism , Complement C4/metabolism , Disease Resistance/immunology , Dose-Response Relationship, Drug , Head Kidney/drug effects , Head Kidney/immunology , Head Kidney/metabolism , Hydrocortisone/blood , Leukocyte Count , Leukocytes/drug effects , Leukocytes/metabolism , Lysosomes/drug effects , Lysosomes/metabolism , Muramidase/metabolism , Muscles/drug effects , Muscles/immunology , Muscles/metabolism , Phenanthrenes/pharmacokinetics , Sea Bream/metabolism , Time Factors , Water Pollutants, Chemical/pharmacokinetics
20.
Ecotoxicol Environ Saf ; 136: 161-172, 2017 Feb.
Article En | MEDLINE | ID: mdl-27866074

The present investigation aimed to assess the possibility of using plasma levels of erythropoietin (EPO) hormone and tissue changes of hematopoietic organs as biomarkers of environmental pollution in abu mullet (Liza abu) and tiger tooth croaker (Otolithes ruber) collected from Musa Creek (northwest of the Persian Gulf). 120 L. abu and O. ruber were collected from five stations at the Musa Creek: Petrochemical, Ghanam, Doragh, Zangi and Patil stations. Blood samples were obtained from the caudal vein. Tissue samples were also taken from the spleen and head kidney, and tissue sections were prepared according to routine histological methods. The concentrations of Hg, Pb, Zn, Cu, and Cd were also measured in the sediment samples. The minimum level of EPO and the most severe tissue changes were determined in fish collected near a Petrochemical station. This station is adjacent to the Imam Khomeini Petrochemical Complex and receives highly contaminated effluents from this complex. The highest degree of contamination (Cd) also belonged to this station. The fish collected from the Patil station represented the highest EPO level and the least tissue changes. This station exhibited a lesser degree of contamination. Based on the results, there was a significant correlation between the plasma level of EPO hormone and the degree of environmental contamination.


Environmental Exposure , Erythropoietin/metabolism , Fish Proteins/metabolism , Hematopoietic System/drug effects , Perciformes/metabolism , Smegmamorpha/metabolism , Water Pollutants, Chemical/toxicity , Animals , Environmental Monitoring , Geologic Sediments/analysis , Indian Ocean , Water Pollutants, Chemical/analysis
...