Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancer Immunol Res ; 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38869428

RESUMEN

Genome editing technologies have seen remarkable progress in recent years, enabling precise regulation of exogenous and endogenous genes. These advances have been extensively applied to the engineering of human T lymphocytes, leading to the development of practice changing therapies for patients with cancer and the promise of synthetic immune cell therapies for a variety of non-malignant diseases. Many distinct conceptual and technical approaches have been used to edit T-cell genomes, however targeted assessments of which techniques are most effective for manufacturing, gene editing and transgene expression are rarely reported. Through extensive comparative evaluation, we identified methods that most effectively enhance engineering of research-scale and pre-clinical T-cell products at critical stages of manufacturing.

2.
Immunity ; 56(10): 2388-2407.e9, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37776850

RESUMEN

Chimeric antigen receptor (CAR) T cell therapy targeting CD19 has achieved tremendous success treating B cell malignancies; however, some patients fail to respond due to poor autologous T cell fitness. To improve response rates, we investigated whether disruption of the co-inhibitory receptors CTLA4 or PD-1 could restore CART function. CRISPR-Cas9-mediated deletion of CTLA4 in preclinical models of leukemia and myeloma improved CAR T cell proliferation and anti-tumor efficacy. Importantly, this effect was specific to CTLA4 and not seen upon deletion of CTLA4 and/or PDCD1 in CAR T cells. Mechanistically, CTLA4 deficiency permitted unopposed CD28 signaling and maintenance of CAR expression on the T cell surface under conditions of high antigen load. In clinical studies, deletion of CTLA4 rescued the function of T cells from patients with leukemia that previously failed CAR T cell treatment. Thus, selective deletion of CTLA4 reinvigorates dysfunctional chronic lymphocytic leukemia (CLL) patient T cells, providing a strategy for increasing patient responses to CAR T cell therapy.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Receptores Quiméricos de Antígenos , Humanos , Receptores de Antígenos de Linfocitos T/metabolismo , Antígeno CTLA-4/genética , Antígeno CTLA-4/metabolismo , Linfocitos T , Inmunoterapia Adoptiva , Antígenos CD19
3.
Science ; 367(6481)2020 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-32029687

RESUMEN

CRISPR-Cas9 gene editing provides a powerful tool to enhance the natural ability of human T cells to fight cancer. We report a first-in-human phase 1 clinical trial to test the safety and feasibility of multiplex CRISPR-Cas9 editing to engineer T cells in three patients with refractory cancer. Two genes encoding the endogenous T cell receptor (TCR) chains, TCRα (TRAC) and TCRß (TRBC), were deleted in T cells to reduce TCR mispairing and to enhance the expression of a synthetic, cancer-specific TCR transgene (NY-ESO-1). Removal of a third gene encoding programmed cell death protein 1 (PD-1; PDCD1), was performed to improve antitumor immunity. Adoptive transfer of engineered T cells into patients resulted in durable engraftment with edits at all three genomic loci. Although chromosomal translocations were detected, the frequency decreased over time. Modified T cells persisted for up to 9 months, suggesting that immunogenicity is minimal under these conditions and demonstrating the feasibility of CRISPR gene editing for cancer immunotherapy.


Asunto(s)
Traslado Adoptivo , Sistemas CRISPR-Cas , Edición Génica , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Linfocitos T/inmunología , Linfocitos T/trasplante , Anciano , Proteína 9 Asociada a CRISPR , Ingeniería Celular , Femenino , Humanos , Masculino , Persona de Mediana Edad , Receptor de Muerte Celular Programada 1/genética , Transgenes
4.
Hum Vaccin Immunother ; 15(5): 1126-1132, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30735463

RESUMEN

The advent of engineered T cells as a form of immunotherapy marks the beginning of a new era in medicine, providing a transformative way to combat complex diseases such as cancer. Following FDA approval of CAR T cells directed against the CD19 protein for the treatment of acute lymphoblastic leukemia and diffuse large B cell lymphoma, CAR T cells are poised to enter mainstream oncology. Despite this success, a number of patients are unable to receive this therapy due to inadequate T cell numbers or rapid disease progression. Furthermore, lack of response to CAR T cell treatment is due in some cases to intrinsic autologous T cell defects and/or the inability of these cells to function optimally in a strongly immunosuppressive tumor microenvironment. We describe recent efforts to overcome these limitations using CRISPR/Cas9 technology, with the goal of enhancing potency and increasing the availability of CAR-based therapies. We further discuss issues related to the efficiency/scalability of CRISPR/Cas9-mediated genome editing in CAR T cells and safety considerations. By combining the tools of synthetic biology such as CARs and CRISPR/Cas9, we have an unprecedented opportunity to optimally program T cells and improve adoptive immunotherapy for most, if not all future patients.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Inmunoterapia Adoptiva , Receptores Quiméricos de Antígenos/uso terapéutico , Antígenos CD19 , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Linfocitos T/inmunología
5.
Genome Biol ; 20(1): 14, 2019 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-30654827

RESUMEN

Genome engineering methods have advanced greatly with the development of programmable nucleases, but methods for quantifying on- and off-target cleavage sites and associated deletions remain nascent. Here, we report an improvement of the GUIDE-seq method, iGUIDE, which allows filtering of mispriming events to clarify the true cleavage signal. Using iGUIDE, we specify the locations of Cas9-guided cleavage for four guide RNAs, characterize associated deletions, and show that naturally occurring background DNA double-strand breaks are associated with open chromatin, gene dense regions, and chromosomal fragile sites. iGUIDE is available from https://github.com/cnobles/iGUIDE .


Asunto(s)
Ingeniería Genética/métodos , Programas Informáticos , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA