Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Photochem Photobiol Sci ; 23(5): 901-918, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38584224

RESUMEN

Pd/ZnO nanocomposites were successfully synthesized by means of one and two pot synthesis and applied in the photodegradation of Rh6G. The nanocomposites were characterized by XRD, SEM, TEM, FTIR and micro-Raman spectroscopies. It was found the presence of PdZn2, PdO and agglomerated particles in the support surface for the Palladium-based nanocomposites fabricated by one-pot route; the two-step method allowed the formation of spherical Pd nanoparticles, with homogeneous distribution in the nanocomposite matrix, with an average size of 2.16 nm. The results show higher photocatalytic efficiency for the samples fabricated under the two-step approach compared to the one-pot synthesis. Based on experimental results, density functional theory (DFT) calculations were carried out to understand the enhancement photocatalytic of Pd/ZnO nanocomposites. To achieve it, the ZnO (001) and (101) surfaces were built and decorated by different Pd coverages. The theoretical results indicated two different photocatalytic mechanisms. In ZnO (001) case, the electrons flowed from surface to Pd, generating the superoxide radical anion (⋅O2-). Furthermore, the density of states of the ZnO (001) surface was modified by impurity Pd-d states at proximity to the conduction states, which may work as electron acceptors states. On the other hand, we found that the electrons flow from Pd to ZnO (101) surface, inducing the formation of ⋅OH and ⋅O2- for the degradation of Rh6G. The density of states of the ZnO (101) revealed a reduction in its bandgap, due to Pd-d states localized above valence states. Hence, our theoretical results suggest that the Pd-d states may facilitate the mobility of electrons and holes in (001) and (101) surfaces, respectively, reducing the rate of charge recombination.

2.
Forensic Sci Int ; 328: 111054, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34666305

RESUMEN

Capillary diffraction or microdiffraction are standard techniques for characterizing small samples when only a few milligrams are available. On the other hand, we have typical grazing incidence diffraction or different variations of grazing incidence (GI) diffraction used, such as in-plane grazing incidence (IP-GI) or GI using a micro focusing source, to study thin films. However, when few powder micrograms are available, the characterization task is complicated. In the present work, few micrograms of typical forensic samples are analyzed using standard Bragg-Brentano, X-ray powder diffraction geometry, and grazing incidence X-ray micro-diffraction (GIµXRD). Samples include soils, cosmetic eyeshadows, two different pyrotechnic materials, and a highly explosive mixture contained at primer cup of ammunition. The analysis was carried out from 1 to 5 degrees of the incident parallel beam with a shaking sample. Depending on the fixed incident angle, different small regions of the diffraction patterns showed an improvement in the intensity of the peaks with respect to the conventional Bragg-Brentano configuration. However, 3-5 degrees of the fixed incident beam showed the best results. This new data acquisition technique, based on the combination of two known diffraction methods, could be a powerful tool for studying samples outside of forensic sciences such as nanomaterials, medicine, or any other field where the sample quantity is extremely small, also, without the need to transport evidence and travel to external facilities with higher analytical performance such as synchrotron radiation installations or other large experimental facilities.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...