Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Article En | MEDLINE | ID: mdl-32350587

The mammalian vestibular epithelia exhibit a remarkably stereotyped organization featuring cellular characteristics under planar cell polarity (PCP) control. PCP mechanisms are responsible for the organization of hair cell morphologic polarization vectors, and are thought to be responsible for the postsynaptic expression of the calcium-binding protein calretinin that defines the utricular striola and cristae central zone. However, recent analyses revealed that subtle differences in the topographic expression of oncomodulin, another calcium-binding protein, reflects heterogeneous factors driving the subtle variations in expression. Calbindin represents a third calcium-binding protein that has been previously described to be expressed in both hair cells and afferent calyces in proximity to the utricular striola and crista central zone. The objective of the present investigation was to determine calbindin's topographic pattern of expression to further elucidate the extent to which PCP mechanisms might exert control over the organization of vestibular neuroepithelia. The findings revealed that calbindin exhibited an expression pattern strikingly similar to oncomodulin. However, within calyces of the central zone calbindin was colocalized with calretinin. These results indicate that organizational features of vestibular epithelia are governed by a suite of factors that include PCP mechanisms as well others yet to be defined.


Calbindin 1/biosynthesis , Calbindin 2/biosynthesis , Calcium-Binding Proteins/metabolism , Hair Cells, Auditory/metabolism , Neuroepithelial Cells/metabolism , Vestibule, Labyrinth/metabolism , Animals , Calbindin 1/metabolism , Calbindin 2/metabolism , Cell Polarity/physiology , Hair Cells, Auditory/cytology , Mice, Inbred C57BL , Neuroepithelial Cells/cytology , Vestibule, Labyrinth/cytology
2.
Ann Otol Rhinol Laryngol ; 128(6_suppl): 125S-133S, 2019 Jun.
Article En | MEDLINE | ID: mdl-31092028

OBJECTIVES: Early in his career, David Lim recognized the scientific impact of genetically anomalous mice exhibiting otoconia agenesis as models of drastically compromised vestibular function. While these studies focused on the mutant pallid mouse, contemporary genetic tools have produced other models with engineered functional modifications. Lim and colleagues foresaw the need to analyze vestibular epithelia from pallid mice to verify the absence of downstream consequences that might be secondary to the altered load represented by otoconial agenesis. More generally, however, such comparisons also contribute to an understanding of the susceptibility of labyrinthine sensory epithelia to more widespread cellular changes associated with what may appear as isolated modifications. METHODS: Our laboratory utilizes a model of vestibular hypofunction produced through genetic alteration, the otoferlin-null mouse, which has been shown to exhibit severely compromised stimulus-evoked neurotransmitter release in type I hair cells of the utricular striola. The present study, reminiscent of early investigations of Lim and colleagues that explored the utility of a genetically altered mouse to explore its utility as a model of vestibular hypofunction, endeavored to compare the expression of the hair cell marker oncomodulin in vestibular epithelia from wild-type and otoferlin-null mice. RESULTS: We found that levels of oncomodulin expression were much greater in type I than type II hair cells, though were similar across the 3 genotypes examined (ie, including heterozygotes). CONCLUSION: These findings support the notion that modifications resulting in a specific component of vestibular hypofunction are not accompanied by widespread morphologic and cellular changes in the vestibular sensory epithelia.


Calcium-Binding Proteins/metabolism , Hair Cells, Vestibular/physiology , Membrane Proteins/genetics , Phenotype , Animals , Disease Models, Animal , Mice , Mice, Knockout
3.
J Biol Chem ; 293(7): 2232-2246, 2018 02 16.
Article En | MEDLINE | ID: mdl-29269412

Altering the expression of Tomosyn-1 (Tomo-1), a soluble, R-SNARE domain-containing protein, significantly affects behavior in mice, Drosophila, and Caenorhabditis elegans Yet, the mechanisms that modulate Tomo-1 expression and its regulatory activity remain poorly defined. Here, we found that Tomo-1 expression levels influence postsynaptic spine density. Tomo-1 overexpression increased dendritic spine density, whereas Tomo-1 knockdown (KD) decreased spine density. These findings identified a novel action of Tomo-1 on dendritic spines, which is unique because it occurs independently of Tomo-1's C-terminal R-SNARE domain. We also demonstrated that the ubiquitin-proteasome system (UPS), which is known to influence synaptic strength, dynamically regulates Tomo-1 protein levels. Immunoprecipitated and affinity-purified Tomo-1 from cultured rat hippocampal neurons was ubiquitinated, and the levels of ubiquitinated Tomo-1 dramatically increased upon pharmacological proteasome blockade. Moreover, Tomo-1 ubiquitination appeared to be mediated through an interaction with the E3 ubiquitin ligase HRD1, as immunoprecipitation of Tomo-1 from neurons co-precipitated HRD1, and this interaction increases upon proteasome inhibition. Further, in vitro reactions indicated direct, HRD1 concentration-dependent Tomo-1 ubiquitination. We also noted that the UPS regulates both Tomo-1 expression and functional output, as HRD1 KD in hippocampal neurons increased Tomo-1 protein level and dendritic spine density. Notably, the effect of HRD1 KD on spine density was mitigated by additional KD of Tomo-1, indicating a direct HRD1/Tomo-1 effector relationship. In summary, our results indicate that the UPS is likely to participate in tuning synaptic efficacy and spine dynamics by precise regulation of neuronal Tomo-1 levels.


Dendritic Spines/metabolism , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Proteasome Endopeptidase Complex/metabolism , R-SNARE Proteins/metabolism , Ubiquitin/metabolism , Animals , Cells, Cultured , Dendritic Spines/enzymology , Dendritic Spines/genetics , Female , Hippocampus/cytology , Hippocampus/enzymology , Male , Nerve Tissue Proteins/genetics , Neurons/enzymology , Post-Synaptic Density/genetics , Post-Synaptic Density/metabolism , Proteasome Endopeptidase Complex/genetics , Protein Binding , R-SNARE Proteins/genetics , Rats , Rats, Sprague-Dawley , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
4.
J Neurosci ; 36(44): 11208-11222, 2016 11 02.
Article En | MEDLINE | ID: mdl-27807164

Neural networks engaged in high-frequency activity rely on sustained synaptic vesicle recycling and coordinated recruitment from functionally distinct synaptic vesicle (SV) pools. However, the molecular pathways matching neural activity to SV dynamics and release requirements remain unclear. Here we identify unique roles of SNARE-binding Tomosyn1 (Tomo1) proteins as activity-dependent substrates that regulate dynamics of SV pool partitioning at rat hippocampal synapses. Our analysis is based on monitoring changes in distinct functionally defined SV pools via V-Glut1-pHluorin fluorescence in cultured hippocampal neurons in response to alterations in presynaptic protein expression. Specifically, we find knockdown of Tomo1 facilitates release efficacy from the Readily Releasable Pool (RRP), and regulates SV distribution to the Total Recycling Pool (TRP), which is matched by a decrease in the SV Resting Pool. Notably, these effects were reversed by Tomo1 rescue and overexpression. Further, we identify that these actions of Tomo1 are regulated via activity-dependent phosphorylation by cyclin-dependent kinase 5 (Cdk5). Assessment of molecular interactions that may contribute to these actions identified Tomo1 interaction with the GTP-bound state of Rab3A, an SV GTPase involved in SV targeting and presynaptic membrane tethering. In addition, Tomo1 via Rab3A-GTP was also observed to interact with Synapsin 1a/b cytoskeletal interacting proteins. Finally, our data indicate that Tomo1 regulation of SV pool sizes serves to adapt presynaptic neurotransmitter release to chronic silencing of network activity. Overall, the results establish Tomo1 proteins as central mediators in neural activity-dependent changes in SV distribution among SV pools. SIGNIFICANCE STATEMENT: Although information transfer at central synapses via sustained high-frequency neural activity requires coordinated synaptic vesicle (SV) recycling, the mechanism(s) by which synapses sense and dynamically modify SV pools to match network demands remains poorly defined. To advance understanding, we quantified SV pool sizes and their sensitivity to neural activity while altering Tomo1 expression, a putative regulator of the presynaptic Readily Releasable Pool. Remarkably, we find Tomo1 actions to extend beyond the Readily Releasable Pool to mediate the Total Recycling Pool and SV Resting Pool distribution, and this action is sensitive to neural activity through Cdk5 phosphorylation of Tomo1. Moreover, Tomo1 appears to exert these actions through interaction with Rab3A-GTP and synapsin proteins. Together, our results argue that Tomo1 is a central mediator of SV availability for neurotransmission.


Guanosine Triphosphate/metabolism , Nerve Tissue Proteins/metabolism , Presynaptic Terminals/metabolism , R-SNARE Proteins/metabolism , SNARE Proteins/metabolism , Synaptic Transmission/physiology , Synaptic Vesicles/metabolism , rab3A GTP-Binding Protein/metabolism , Animals , Cells, Cultured , Female , Hippocampus/metabolism , Hippocampus/ultrastructure , Male , Rats , Synapses
5.
Traffic ; 15(9): 997-1015, 2014 Sep.
Article En | MEDLINE | ID: mdl-24909540

Rab GTPases associated with insulin-containing secretory granules (SGs) are key in targeting, docking and assembly of molecular complexes governing pancreatic ß-cell exocytosis. Four Rab3 isoforms along with Rab27A are associated with insulin granules, yet elucidation of the distinct roles of these Rab families on exocytosis remains unclear. To define specific actions of these Rab families we employ Rab3GAP and/or EPI64A GTPase-activating protein overexpression in ß-cells from wild-type or Ashen mice to selectively transit the entire Rab3 family or Rab27A to a GDP-bound state. Ashen mice carry a spontaneous mutation that eliminates Rab27A expression. Using membrane capacitance measurements we find that GTP/GDP nucleotide cycling of Rab27A is essential for generation of the functionally defined immediately releasable pool (IRP) and central to regulating the size of the readily releasable pool (RRP). By comparison, nucleotide cycling of Rab3 GTPases, but not of Rab27A, is essential for a kinetically rapid filling of the RRP with SGs. Aside from these distinct functions, Rab3 and Rab27A GTPases demonstrate considerable functional overlap in building the readily releasable granule pool. Hence, while Rab3 and Rab27A cooperate to generate release-ready SGs in ß-cells, they also direct unique kinetic and functional properties of the exocytotic pathway.


Exocytosis/physiology , GTP Phosphohydrolases/metabolism , Insulin/metabolism , rab3 GTP-Binding Proteins/metabolism , Animals , Cell Nucleolus/metabolism , Cytoplasmic Granules/metabolism , GTPase-Activating Proteins/metabolism , Insulin-Secreting Cells/metabolism , Mice , Mice, Inbred C3H , Protein Transport/physiology , Secretory Vesicles/metabolism
...