Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 16 de 16
1.
Funct Plant Biol ; 50(11): 901-914, 2023 11.
Article En | MEDLINE | ID: mdl-37489023

The tillering phase of wheat (Triticum aestivum ) crops is extremely susceptible to drought. We explored the potential of silver nanoparticles (AgNPs) in protecting wheat genotypes from drought injury during this sensitive stage. After treating with AgNPs (60ppm), the plants were submitted to different water levels; i.e. 100% field capacity (FC), 75% FC (mild drought), 50% FC (moderate drought) and 25% FC (severe drought) from 15 to 41days after sowing (tillering phase). Leaf physiological data were collected at stress termination, while yield attributes were recorded at crop maturity. We found that increasing drought intensity significantly impaired leaf physiology and grain yield of both studied genotypes. Compared with control, moderately and severely drought-stressed plants produced 25% and 45% lesser grain yield per spike, respectively (averaged across genotypes and years of study). Likewise, moderate and severe drought reduced photosynthesis by 49% and 76%, respectively, compared with control. In contrast, AgNPs significantly restored leaf physiological functioning and grain yield formation at maturity. For example, under moderate and severe drought, AgNPs-treated plants produced 22% and 17% more grains per plant, respectively, than their respective water-treated plants. Our study suggests that exogenous AgNPs can protect wheat crops from drought during early development stages.


Metal Nanoparticles , Water , Triticum/genetics , Silver/pharmacology , Droughts , Plant Leaves
2.
Physiol Mol Biol Plants ; 29(5): 739-753, 2023 May.
Article En | MEDLINE | ID: mdl-37363422

This study aimed to optimize methods for identifying heat-tolerant and heat-susceptible cotton plants by examining the relationship between leaf physiology and cotton yield. Cotton accessions were exposed to elevated temperatures through staggered sowing and controlled growth conditions in a glasshouse. Based on their yield performance, leaf physiology, cell biochemistry, and pollen germination, the accessions were categorized as heat-tolerant, moderately tolerant, or susceptible. High temperatures had a significant impact on various leaf physiological and biochemical factors, such as cell injury, photosynthetic rate, stomatal conductance, transpiration rate, leaf temperature, chlorophyll fluorescence, and enzyme activities. The germination of flower pollen and seed cotton yield was also affected. The study demonstrated that there was a genetic variability for heat tolerance among the tested cotton accessions, as indicated by the interaction between accession and environment. Leaf gas exchange, cell biochemistry, pollen germination, and cotton yield were strongly associated with heat-sensitive accessions, but this association was negligible in tolerant accessions. Principal component analysis was used to classify the accessions based on their performance under heat stress conditions. The findings suggest that leaf physiological traits, cell biochemistry, pollen germination, and cotton yield can be effective indicators for selecting heat-tolerant cotton lines. Future research could explore additional genetic traits for improved selection and development of heat-tolerant accessions. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-023-01322-8.

3.
Plant Physiol Biochem ; 196: 33-42, 2023 Mar.
Article En | MEDLINE | ID: mdl-36689831

Cumulative microbial respiration reflects microbial activities and their potential to support plant growth, where salt tolerant rhizobacteria can optimize their respiration, and ensure plant survival under salt stress. We evaluated cumulative microbial respiration of different salt tolerant rhizobacterial strains at different salinity levels, and checked their ability to sustain plant growth under natural saline conditions by using maize as test crop. Our results revealed that at the highest EC level (10 dS m-1), strain 'SUA-14' performed significantly better, and exhibited the greatest cumulative respiration (4.2 fold) followed by SHM-13 (3.8 fold), as compared to un-inoculated control. Moreover, results of the field trial indicated a similar trend, where significant improvements in shoot fresh weight (59%), root fresh weight (80%), shoot dry weight (56%), root dry weight (1.4 fold), leaf area (1.9 fold), straw yield (41%), cob diameter (33%), SPAD value (84%), yield (99%), relative water contents (91%), flavonoid (55%), 1000 grain weight (∼100%), soluble sugars (41%) and soluble proteins (45%) were observed due to inoculation of strain 'SUA-14' as compared to un-inoculated control. Similarly, substantial decline in leaf Na+ (34%), Na+/K+ ratio (69%), electrolyte leakage (8%), catalase (54%), peroxidase (73%), and H2O2 (50%) activities were observed after inoculation of 'SUA-14' with a concomitant increment in the leaf K+ contents (70%) under salinity stress than un-inoculated control. Hence, among all the tested rhizobacterial isolates, 'SUA-14' served as the most efficient strain in alleviating the detrimental impacts of salinity on maize growth and yield. The 16S rRNA sequencing identified it as Acinetobacter johnsonii.


Soil Microbiology , Zea mays , RNA, Ribosomal, 16S , Hydrogen Peroxide , Salt Stress , Salinity
4.
Front Plant Sci ; 13: 1005773, 2022.
Article En | MEDLINE | ID: mdl-36311143

Wheat crops are highly sensitive to high temperatures during their reproductive and grain-filling phases. We hypothesized that potassium could increase thermotolerance in wheat during grain filling by protecting cellular organelles, particularly chlorophyll, from heat injury. Two wheat genotypes, Ujala-16 (relatively heat tolerant) and Anaj-17 (relatively susceptible) were grown in pots and were submitted to 4 and 8 days of heat stress under polythene sheets 1 week after anthesis. One day before the onset of heat stress, 2% potassium (K) as K2SO4 was sprayed on all the plants. Flag leaves from both genotypes were collected after 4 and 8 days of heat stress. Leaf physiology changes were measured to quantify heat damage and to understand the K-induced recovery mechanism. The crop was harvested 125 days after sowing, and grain yield data were collected. Increasing duration of heat stress significantly impaired leaf physiology and grain yield of both studied wheat genotypes. Compared with control (under optimum temperature), 4 and 8 days heat-stressed plants produced 11 and 19% lesser grain yield per spike (averaged across genotypes and in the second years of study), respectively. Likewise, 4- and 8-days heat-stressed plants had 15 and 37% (averaged across genotypes and in the second years of study) lower flag leaf photosynthesis, respectively, compared with control plants. Across the genotypes, 8-days heat caused significantly more grain yield loss in Anaj-17 during the second year than in Ujala-16. Foliar K significantly restored leaf chlorophyll, Pn, Fv/Fm by reducing cellular membrane damage in the heat-stressed plants. This physiological recovery and activation of the plant defensive system by K under high-temperature stress protected the growth and grain development. For example, K-treated plants produced 19% higher 1,000 grain weight in 8 days of heat stress (across genotypes and in the second years of study) compared with water-treated plants under the hot environment of the respective thermal regime. Our study suggests that wheat performance under terminal heat stress can be improved through the exogenous application of K.

5.
Front Plant Sci ; 13: 914653, 2022.
Article En | MEDLINE | ID: mdl-35837462

An ample quantity of water and sufficient nutrients are required for economical rice production to meet the challenges of ever-increasing food demand. Currently, slow-release nitrogenous fertilizers for efficient inputs utilization and maximum economic yield of field crops are in the limelight for researchers and farmers. In this study, we evaluated the comparative efficacy of conventional urea and coated urea (zinc and neem) on rice grown under aerobic and anaerobic regimes in greenhouse conditions. For the aerobic regime, field capacity was maintained at 80-100% to keep the soil aerated. On the other hand, for the anaerobic regime, pots were covered with a polythene sheet throughout the experimentation to create flooded conditions. All forms of urea, conventional and coated (zinc and neem), improved plant growth, gas exchange, yield, yield contributing parameters, and quality characteristics of rice crop. However, better performance in all attributes was found in the case of zinc-coated urea. Gas exchange attributes (photosynthetic rate, 30%, and stomatal conductance 24%), yield parameters like plant height (29%), tillers per plant (38%), spikelets per spike (31%), grains per panicle (42%), total biomass (53%), and grain yield (45%) were recorded to be maximum in rice plants treated with zinc-coated urea. The highest grain and straw nitrogen contents, grain protein contents, and grain water absorption ratio were also found in plants with zinc-coated urea applications. In irrigation practices, the anaerobic regime was found to be more responsive compared to the aerobic regime regarding rice growth, productivity, and quality traits. Thus, to enhance the productivity and quality of rice grown in anaerobic conditions, zinc-coated urea is best suited as it is more responsive when compared to other forms of urea.

6.
PLoS One ; 17(6): e0268907, 2022.
Article En | MEDLINE | ID: mdl-35696364

Cotton (Gossypium hirsutum L.) is one of the most important cash crops primarily grown for fiber. It is a perennial crop with indeterminate growth pattern. Nitrogen (N) is extremely important for vegetative growth as balanced N-nutrition improves photosynthesis, resulting in better vegetative growth. Excessive N-supply results in more vegetative growth, which increases the incidence of insect pest and diseases' infestation, pollute surface and ground water, delays maturity and produces low crop yield with poor quality. The use of plant growth regulators (PGRs) is an emerging option to control excessive vegetative growth. The PGRs help in improving plant architecture, boll retention, boll opening, yield and quality by altering growth and physiological processes such as photosynthesis, assimilate partitioning and nutrients dynamic inside the plant body. Mepiquat chloride (1,1-dimethylpiperidinum chloride) is globally used PGR for canopy development and control of excessive vegetative growth in cotton. This study investigated the effect of mepiquat chloride (MC) and N application on yield and yield components of transgenic cotton variety 'BT-FSH-326'. Two N rates (0, 198 kg ha-1) and five MC rates (0, 30,60, 90 and 120 g ha-1) were included in the study. Results revealed that MC and N application improved boll weight, number of bolls per plant, and seed cotton and lint yields. The highest seed cotton and lint yields (3595 kg ha-1 and 1701 kg ha-1, respectively) were observed under foliar application of 198 kg ha-1 N and 120 g ha-1 MC. Fiber length, fiber strength, micronaire and uniformity were significantly improved with foliar application of MC and N. In conclusion, foliar application of MC and N could be helpful in improving yield and fiber quality of cotton.


Gossypium , Nitrogen , Cotton Fiber , Gossypium/genetics , Piperidines , Plant Growth Regulators
7.
PLoS One ; 17(4): e0267819, 2022.
Article En | MEDLINE | ID: mdl-35482811

Drought stress is a major limitation in wheat production around the globe. Organic amendments could be the possible option in semi-arid climatic conditions to mitigate the adverse effects of drought at critical growth stages. Wheat straw biochar (BC0 = Control, BC1 = 3% biochar and BC2 = 5% biochar) was used to alleviate the drought stress at tillering (DTS), flowering (DFS), and grain filling (DGFS) stages. Drought stress significantly reduced the growth and yield of wheat at critical growth stages, with DGFS being the most susceptible stage, resulting in significant yield loss. Biochar application substantially reduced the detrimental effects of drought by improving plant height (15.74%), fertile tiller count (17.14%), spike length (16.61%), grains per spike (13.89%), thousand grain weight (10.4%), and biological yield (13.1%) when compared with the control treatment. Furthermore, physiological parameters such as water use efficiency (38.41%), stomatal conductance (42.76%), chlorophyll a (19.3%), chlorophyll b (22.24%), transpiration rate (39.17%), photosynthetic rate (24.86%), electrolyte leakage (-42.5%) hydrogen peroxide (-18.03%) superoxide dismutase (24.66%), catalase (24.11%) and peroxidase (-13.14%) were also improved by biochar application. The use of principal component analysis linked disparate scales of our findings to explain the changes occurred in wheat growth and yield in response to biochar application under drought circumstances. In essence, using biochar at 5% rate could be a successful strategy to promote wheat grain production by reducing the hazardous impacts of drought stress.


Droughts , Triticum , Antioxidants , Charcoal , Chlorophyll A , Defense Mechanisms , Edible Grain
8.
Front Plant Sci ; 13: 842349, 2022.
Article En | MEDLINE | ID: mdl-35251111

Gradually rising atmospheric temperature is the vital component of the environment, which is anticipated as the riskiest abiotic stress for crop growth. Nanotechnology revolutionizing the agricultural sectors, notably, zinc oxide nanoparticles (nano-ZnO) has captured intensive research interests due to their distinctive properties and numerous applications against abiotic stresses. Mungbean (Vigna radiata L.), being a summer crop, is grown all over the world at an optimum temperature of 28-30°C. A rise in temperature above this range, particularly during the flowering stage, can jeopardize the potential performance of the plant. Hence, an outdoor study was performed to evaluate the effect of multiple suspensions of nano-ZnO (0, 15, 30, 45, and 60 mg l-1) on physicochemical attributes and yield of mungbean crop under heat stress. Heat stress was induced by fine-tuning of sowing time as: S1 is the optimal sowing time having day/night temperatures <40/25°C and S2 and S3 are late sown that were above >40/25°C during the flowering stage. In vitro studies on Zn release from nano-ZnO by inductively coupled plasma mass spectroscopy (ICPMS) disclosed that the Zn release and particles uptake from nano-ZnO were concentration-dependent. Exogenous foliar application of nano-ZnO significantly upstreamed the production of antioxidants and osmolytes to attenuate the shocks of heat stress in S2 and S3. Likewise, nano-ZnO substantially rebated the production of reactive oxygen species in both S2 and S3 that was associated with curtailment in lipid peroxidation. Adding to that, foliar-applied nano-ZnO inflates not only the chlorophyll contents and gas exchange attributes, but also the seeds per pod (SPP) and pods per plant (PPP), which results in the better grain yield under heat stress. Thus, among all the sowing dates, S1 statistically performed better than S2 and S3, although foliar exposure of nano-ZnO boosted up mungbean performance under both the no heat and heat-induced environments. Hence, foliar application of nano-ZnO can be suggested as an efficient way to protect the crop from heat stress-mediated damages with the most negligible chances of nanoparticles delivery to environmental compartments that could be possible in case of soil application.

9.
Sci Rep ; 9(1): 13022, 2019 09 10.
Article En | MEDLINE | ID: mdl-31506449

Coincidence of high temperature with terminal reproductive pheno-stages of cotton is chief constraint to achieve yield potential. This high temperature interfere plant defensive system, physiological process, water relations and lint yield production. In this study, we modulated the detrimental outcomes of heat stress on cotton through the foliar spray of nutrients. Cotton crop was exposed to sub-optimal and supra-optimal thermal regimes for a period of one week at squaring, flowering and boll formation stages under glass house and field conditions. Foliar spray of potassium (K-1.5%), zinc (Zn-0.2%) and boron (B-0.1%) were applied at three reproductive stages one day prior to expose high temperature regimes. High temperature increased lipid membrane damage through increased malondialdehyde (MDA) contents in cotton leaves. High temperature stress also reduced leaf chlorophyll contents, net photosynthetic rate, stomatal conductance, water potential, averaged boll weight (g) and seed cotton yield per plant. Various nutrients variably influenced growth and physiology of heat-stressed cotton plants. Zinc outclassed all other nutrients in increasing leaf SOD, CAT, POX, AsA, TPC activity, chlorophyll contents, net photosynthetic rate, stomatal conductance, water potential, boll weight and seed cotton yield per plant. For example, zinc improved seed cotton yield under supra-optimal thermal regime by 17% and under sub-optimal thermal regime by 12% of glasshouse study while 19% under high temperature sowing dates of field study than the water treated plants under the same temperatures. Conclusively, increasing intensities of temperature adversely affected the recorded responses of cotton and exogenous application of Zn efficaciously alleviated heat induced perturbations. Moreover, exogenous nutrients mediated upregulations in physiochemical attributes induced heat tolerance at morphological level.


Gossypium/physiology , Heat-Shock Response , Minerals/metabolism , Nutritional Status , Chlorophyll/metabolism , Gossypium/growth & development , Greenhouse Effect , Photosynthesis
10.
Sci Rep ; 9(1): 3427, 2019 Feb 27.
Article En | MEDLINE | ID: mdl-30808925

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

11.
Sci Rep ; 8(1): 17086, 2018 11 20.
Article En | MEDLINE | ID: mdl-30459328

Episodes of extremely high temperature during reproductive stages of cotton crops are common in many parts of the world. Heat stress negatively influences plant growth, physiology and ultimately lint yield. This study attempts to modulate heat-induced damage to cotton crops via application of growth regulators e.g. hydrogen peroxide (H2O2 30ppm), salicylic acid (SA 50ppm), moringa leaf extract (MLE 30 times diluted) and ascorbic acid (ASA 70ppm). Cotton plants were exposed to different thermal regimes by staggering sowing time (field) or exposing to elevated temperatures (38/24 °C and 45/30 °C) for one week during reproductive growth stages (glasshouse). Elevated temperatures significantly induced lipid membrane damage, which was evident from an increased malondialdehyde (MDA) level in cotton leaves. Heat-stressed plants also experienced a significant reduction in leaf chlorophyll contents, net photosynthetic rate and lint yield. Hydrogen peroxide outclassed all the other regulators in increasing leaf SOD, CAT activity, chlorophyll contents, net photosynthetic rate, number of sympodial branches, boll weight and fiber quality components. For example, hydrogen peroxide improved boll weight of heat stressed plants by 32% (supra), 12% (sub) under glasshouse and 18% (supra) under field conditions compared with water treated plants under the same temperatures. Growth regulators, specifically, H2O2 protected physiological processes of cotton from heat-induced injury by capturing reactive oxygen species and modulating antioxidant enzymes. Thus, cotton performance in the future warmer climates may be improved through regulation (endogenous) or application (exogenous) hormones during reproductive phases.


Gossypium/drug effects , Gossypium/immunology , Hot Temperature , Oxidative Stress , Plant Growth Regulators/pharmacology , Plant Leaves/drug effects , Plant Leaves/immunology , Gossypium/growth & development , Malondialdehyde/metabolism , Plant Leaves/growth & development
12.
Environ Sci Pollut Res Int ; 25(20): 19918-19931, 2018 Jul.
Article En | MEDLINE | ID: mdl-29740768

Poultry manure (PM), a rich source for crop nutrients, is produced in ample quantities worldwide. It provides necessary nutrient to soil and has a potential to improve plant water holding availability under semiarid environment. The effect of composted poultry manure (CPM) and irrigation regimes on morpho-physiology of selective maize (Zea mays L.) hybrids (H1 = drought tolerant, H2 = drought sensitive) was investigated in this study. Two field experiments were conducted during 2010 and 2011 under randomized complete block design with split split-plot arrangements and three replications of each treatment. Irrigation regimes (I1 = 300, I2 = 450, I3 = 600 mm) were kept in main plots; the two maize hybrids (H1 and H2) in sub-plots and nutrient levels (L1 = recommended rate of NPK (control), L2 = 8 t ha-1 CPM, L3 = 10 t ha-1 CPM, and L4 = 12 t ha-1 CPM) were arranged in sub sub-plots. The drought tolerant hybrid showed best growth under all treatments. Results revealed that maximum leaf area index (LAI) was recorded with the application of the recommended dose of NPK. Low irrigation regimes (I1 and I2) highly significantly (P < 0.01) reduced the photosynthesis and transpiration rate in both hybrids while application of 12 t ha-1 CPM was able to partially alleviate the effect of water stress on these parameters. Resultantly, the application of 12 t ha-1 CPM enhanced the plant growth and increased grain yield (21%; 4.17 vs 5.27) under limited water availability (I2L4) as compared to the recommended dose of NPK (I2L1). However, the nutrient application under control treatment had maximum grain yield. Therefore, shortage of water for maize production might be partially alleviated by the application of 12 t ha-1 CPM.


Agricultural Irrigation/methods , Manure , Poultry , Soil , Zea mays/physiology , Animals , Edible Grain/physiology , Fertilizers , Photosynthesis , Plant Leaves/physiology
13.
Environ Sci Pollut Res Int ; 25(14): 13719-13730, 2018 May.
Article En | MEDLINE | ID: mdl-29508194

Growth, development, and economic yield of agricultural crops rely on moisture, temperature, light, and carbon dioxide concentration. However, the amount of these parameters is varying with time due to climate change. Climate change is factual and ongoing so, first principle of agronomy should be to identify climate change potential impacts and adaptation measures to manage the susceptibilities of agricultural sector. Crop models have ability to predict the crop's yield under changing climatic conditions. We used OILCROP-SUN model to simulate the influence of elevated temperature and CO2 on crop growth duration, maximum leaf area index (LAI), total dry matter (TDM), and achene yield of sunflower under semi-arid conditions of Pakistan (Faisalabad, Punjab). The model was calibrated and validated with the experimental data of 2012 and 2013, respectively. The simulation results showed that phenological events of sunflower were not changed at higher concentration of CO2 (430 and 550 ppm). However LAI, achene yield, and TDM increased by 0.24, 2.41, and 4.67% at 430 ppm and by 0.48, 3.09, and 9.87% at 550 ppm, respectively. Increased temperature (1 and 2 °C) reduced the sunflower duration to remain green that finally led to less LAI, achene yield, and TDM as compared to present conditions. However, the drastic effects of increased temperature on sunflower were reduced to some extent at 550 ppm CO2 concentration. Evaluation of different adaptation options revealed that 21 days earlier (as compared to current sowing date) planting of sunflower crop with increased plant population (83,333 plants ha-1) could reduce the yield losses due to climate change. Flowering is the most critical stage of sunflower to water scarcity. We recommended skipping second irrigation or 10% (337.5 mm) less irrigation water application to conserve moisture under possible water scarce conditions of 2025 and 2050.


Adaptation, Physiological/physiology , Climate Change , Crops, Agricultural/physiology , Helianthus/physiology , Agricultural Irrigation , Carbon Dioxide/analysis , Crops, Agricultural/growth & development , Helianthus/growth & development , Models, Biological , Pakistan , Temperature , Water
14.
Plant Physiol Biochem ; 116: 150-166, 2017 Jul.
Article En | MEDLINE | ID: mdl-28575839

Wheat is one of the major staple food of the world, which is badly affected by water deficit stress. To fulfill the dietary needs of increasing population with depleting water resources there is need to adopt technologies which result in sufficient crop yield with less water consumption. One of them is partial root zone drying (PRD). Keeping in view these conditions, a wire house experiment was conducted at University College of Agriculture and Environmental Sciences, The Islamia University Bahawalpur during 2015, to screen out the different wheat genotypes for PRD. Five approved local wheat cultivars (V1= Galaxy-2013, V2= Punjab-2011, V3 = Faisalabad-2008, V4 = Lasani-2008 and V5 = V.8200) and two irrigation levels (I1 = control irrigation and I2 = PRD irrigation) with completely randomized design having four replications were used in the experiment. Among the varieties Galaxy-2013 performed the best and attained maximum plant height, leaf area, stomatal conductance, photosynthesis, total sugars, proline contents and antioxidant enzymes activities and minimum values of all growth and physiological parameters were recorded in variety V.8200. For irrigation levels, higher values of growth, physiological and water related parameters were recorded in control treatment (I1) except leaf water potential, osmotic potential, total sugars and proline contents. However enzymes activities were higher under PRD treatment for all varieties. It was concluded that Galaxy-2013 was the most compatible and V.8200 was the most susceptible variety under PRD condition, respectively and more quality traits and enzymatic activities were recorded under PRD condition as compared to control treatment.


Triticum/metabolism , Triticum/physiology , Antioxidants/metabolism , Desiccation , Photosynthesis/genetics , Photosynthesis/physiology , Plant Leaves/metabolism , Plant Leaves/physiology , Plant Roots/metabolism , Plant Roots/physiology , Rhizosphere
15.
Environ Sci Pollut Res Int ; 24(21): 17511-17525, 2017 Jul.
Article En | MEDLINE | ID: mdl-28593549

The combination of nitrogen and plant population expresses the spatial distribution of crop plants. The spatial distribution influences canopy structure and development, radiation capture, accumulated intercepted radiation (Sa), radiation use efficiency (RUE), and subsequently dry matter production. We hypothesized that the sunflower crop at higher plant populations and nitrogen (N) rates would achieve early canopy cover, capture more radiant energy, utilize radiation energy more efficiently, and ultimately increase economic yield. To investigate the above hypothesis, we examined the influences of leaf area index (LAI) at different plant populations (83,333, 66,666, and 55,555 plants ha-1) and N rates (90, 120, and 150 kg ha-1) on radiation interception (Fi), photosynthetically active radiation (PAR) accumulation (Sa), total dry matter (TDM), achene yield (AY), and RUE of sunflower. The experimental work was conducted during 2012 and 2013 on sandy loam soil in Punjab, Pakistan. The sunflower crop captured more than 96% of incident radiant energy (mean of all treatments), 98% with a higher plant population (83,333 plants ha-1), and 97% with higher N application (150 kg ha-1) at the fifth harvest (60 days after sowing) during both study years. The plant population of 83,333 plants ha-1 with 150 kg N ha-1 ominously promoted crop, RUE, and finally productivity of sunflower (AY and TDM). Sunflower canopy (LAI) showed a very close and strong association with Fi (R 2 = 0.99 in both years), PAR (R 2 = 0.74 and 0.79 in 2012 and 2013, respectively), TDM (R 2 = 0.97 in 2012 and 0.91 in 2013), AY (R 2 = 0.95 in both years), RUE for TDM (RUETDM) (R 2 = 0.63 and 0.71 in 2012 and 2013, respectively), and RUE for AY (RUEAY) (R 2 = 0.88 and 0.87 in 2012 and 2013, respectively). Similarly, AY (R 2 = 0.73 in 2012 and 0.79 in 2013) and TDM (R 2 = 0.75 in 2012 and 0.84 in 2013) indicated significant dependence on PAR accumulation of sunflower. High temperature during the flowering stage in 2013 shortened the crop maturity duration, which reduced the LAI, leaf area duration (LAD), crop growth rate (CGR), TDM, AY, Fi, Sa, and RUE of sunflower. Our results clearly revealed that RUE was enhanced as plant population and N application rates were increased and biomass assimilation in semi-arid environments varied with radiation capture capacity of sunflower.


Helianthus , Nitrogen , Agriculture , Biomass , Pakistan , Photosynthesis , Plant Leaves
16.
Environ Sci Pollut Res Int ; 23(12): 11864-75, 2016 Jun.
Article En | MEDLINE | ID: mdl-26957429

An investigation was carried out to examine the combined and individual effects of cadmium (Cd) and arsenic (As) stress on osmolyte accumulation, antioxidant activities, and reactive oxygen species (ROS) production at different growth stages (45, 60, 75, 90 days after sowing (DAS)) of two maize cultivars viz., Dong Dan 80 and Run Nong 35. The Cd (100 µM) and As (200 µM) were applied separately as well as in combination (Cd + As) at 30 DAS. Results revealed pronounced variations in the behavior of antioxidants, osmolytes, and ROS in both maize cultivars under the influence of Cd and As stress. Activities of enzymatic (SOD, POD, CAT and APX, GPX, GR) and non-enzymatic (GSH and AsA) antioxidants, generation of ROS, and accumulation of osmolytes were enhanced with the passage of time; therefore, the maximum values for these attributes were observed at 90 DAS for both cultivars. Exposure of plants to Cd or As stress considerably enhanced the antioxidant activities, ROS, and osmolyte accumulation compared with control, while combined application of Cd + As was more devastating in reducing plant biomass of both maize cultivars. Among cultivars, Dong Dan 80 was better able to negate the heavy metal-induced oxidative damage, which was associated with higher antioxidant activities, greater osmolytes accumulation, and lower ROS production in this cultivar.


Antioxidants/metabolism , Arsenic/pharmacology , Cadmium/pharmacology , Osmoregulation/drug effects , Soil Pollutants/pharmacology , Zea mays/metabolism , Glutathione Peroxidase/metabolism , Glutathione Reductase/metabolism , Hydrogen Peroxide/metabolism , Lipid Peroxidation , Oxidation-Reduction , Oxidative Stress/drug effects , Plant Proteins/metabolism , Plant Roots/drug effects , Plant Roots/metabolism , Reactive Oxygen Species/pharmacology , Stress, Physiological , Zea mays/drug effects
...