Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 254(Pt 2): 127778, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37926320

RESUMEN

Abiotic stress is one of the major environmental constraints limiting plant growth. Syntrichia caninervis is one of the unique plant models that can cope with harsh environments. Reactive oxygen species (ROS) are a vital signaling molecule for protecting plants from oxidative stress, but research on ROS in S. caninervis is limited. Here, we identified 112 ROS genes in S. caninervis, including 40 GSTs, 51 PODs, 9 SODs, 6 CATs, 3 GPXs and 3 APXs families. GO and KEGG analyses showed that ROS genes are involved in responses to various stimuli and phenylpropanoid biosynthesis. ROS genes contain many stress-responsive and hormonal cis-elements in their promoter regions. More ROS genes were induced by cold stress than desiccation stress, and both conditions changed the transcript abundances of several ROS genes. CAT and POD, H2O2, MDA, and GSH were also induced under biotic stress, specifically CAT activity. The results indicated that the ScCAT genes and their activities could be strongly associated with the regulation of ROS production. This is the first systematic identification of ROS genes in S. caninervis and our findings contribute to further research into the roles of ScROS adjustment under abiotic stress while also providing excellent genetic resources for plant breeding.


Asunto(s)
Briófitas , Bryopsida , Frío Extremo , Humanos , Especies Reactivas de Oxígeno , Desecación , Peróxido de Hidrógeno , Fitomejoramiento , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas
2.
Environ Res ; 238(Pt 2): 117282, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37783329

RESUMEN

Plant diseases pose a severe threat to modern agriculture, necessitating effective and lasting control solutions. Environmental factors significantly shape plant ecology. Human-induced greenhouse gas emissions have led to global temperature rise, impacting various aspects, including carbon dioxide (CO2) concentration, temperature, ozone (O3), and ultraviolet-B, all of which influence plant diseases. Altered pathogen ranges can accelerate disease transmission. This review explores environmental effects on plant diseases, with climate change affecting fungal biogeography, disease incidence, and severity, as well as agricultural production. Moreover, we have discussed how climate change influences pathogen development, host-fungal interactions, the emergence of new races of fungi, and the dissemination of emerging fungal diseases across the globe. The discussion about environment-mediated impact on pattern-triggered immunity (PTI), effector-triggered immunity (ETI), and RNA interference (RNAi) is also part of this review. In conclusion, the review underscores the critical importance of understanding how climate change is reshaping plant-fungal interactions. It highlights the need for continuous research efforts to elucidate the mechanisms driving these changes and their ecological consequences. As the global climate continues to evolve, it is imperative to develop innovative strategies for mitigating the adverse effects of fungal pathogens on plant health and food security.


Asunto(s)
Biodiversidad , Cambio Climático , Humanos , Temperatura , Plantas , Enfermedades de las Plantas/microbiología
3.
Int J Mol Sci ; 24(7)2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-37047111

RESUMEN

Transcription factor (TF) families play important roles in plant stress responses. S. caninervis is a new model moss for plant desiccation tolerance studies. Here, we report a high-confidence identification and characterization of 591 TFs representing 52 families that covered all chromosomes in S. caninervis. GO term and KEGG pathway analysis showed that TFs were involved in the regulation of transcription, DNA-templated, gene expression, binding activities, plant hormone signal transduction, and circadian rhythm. A number of TF promoter regions have a mixture of various hormones-related cis-regulatory elements. AP2/ERF, bHLH, MYB, and C2H2-zinc finger TFs were the overrepresented TF families in S. caninervis, and the detailed classification of each family is performed based on structural features. Transcriptome analysis revealed the transcript abundances of some ScAP2/ERF, bHLH, MYB, and C2H2 genes were accumulated in the treated S. caninervis under cold, dehydration, and rehydration stresses. The RT-qPCR results strongly agreed with RNA-seq analysis, indicating these TFs might play a key role in S. caninervis response to abiotic stress. Our comparative TF characterization and classification provide the foundations for functional investigations of the dominant TF genes involved in S. caninervis stress response, as well as excellent stress tolerance gene resources for plant stress resistance breeding.


Asunto(s)
Bryopsida , Factores de Transcripción , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica de las Plantas , Fitomejoramiento , Estrés Fisiológico/genética , Bryopsida/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
4.
Sci Rep ; 11(1): 2266, 2021 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-33500544

RESUMEN

WD40 domain-containing proteins constitute one of the most abundant protein families in all higher plants and play vital roles in the regulation of plant growth and developmental processes. To date, WD40 protein members have been identified in several plant species, but no report is available on the WD40 protein family in mango (Mangifera indica L.). In this study, a total of 315 WD40 protein members were identified in mango and further divided into 11 subgroups according to the phylogenetic tree. Here, we reported mango TRANSPARENT TESTA GLABRA 1 (MiTTG1) protein as a novel factor that functions in the regulation of Arabidopsis root growth and development. Bimolecular fluorescence complementation (BiFC) assay in tobacco leaves revealed that MiTTG1 protein physically interacts with MiMYB0, MiTT8 and MibHLH1, implying the formation of a new ternary regulatory complex (MYB-bHLH-WD40) in mango. Furthermore, the MiTTG1 transgenic lines were more adapted to abiotic stresses (mannitol, salt and drought stress) in terms of promoted root hairs and root lengths. Together, our findings indicated that MiTTG1 functions as a novel factor to modulate protein-protein interactions and enhance the plants abilities to adjust different abiotic stress responses.


Asunto(s)
Adaptación Fisiológica , Arabidopsis/fisiología , Genómica , Mangifera/genética , Proteínas de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Estrés Fisiológico , Repeticiones WD40/genética , Secuencias de Aminoácidos , Arabidopsis/genética , Secuencia Conservada , Sequías , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Ontología de Genes , Marcadores Genéticos , Mangifera/crecimiento & desarrollo , Manitol/farmacología , Anotación de Secuencia Molecular , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Mapas de Interacción de Proteínas , Estrés Salino/efectos de los fármacos , Estrés Fisiológico/genética , Fracciones Subcelulares/metabolismo
5.
Genomics ; 113(1 Pt 1): 356-365, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33338632

RESUMEN

Circular RNA is one of the endogenous non-coding RNAs with a covalently closed loop structure and largely involved in regulating gene expression. However, the abundance of circular RNAs and their regulatory functions during the early stages of fiber development are still not known. In this work, we conducted high-throughput sequencing of the Ligonlintless-1 and its wild-type at 0 DPA, 8 DPA and stem. A total of 2811 circular RNAs were identified and unevenly distributed across cotton chromosomes. We found 34, 142 and 27 circular RNAs were differentially expressed between Ligonlintless-1 and wild-type at 0 DPA, 8 DPA and stem, respectively. Both circular RNA-microRNA-mRNA network and MeJA treatment results in Ligonlintless-1 and wild-type might provide a strong indication of four circular RNAs and ghr_miR169b being important biological molecular associating with fiber development. The results provide new insight into the putative molecular function of circular RNAs in the regulation of fiber development.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Gossypium/genética , ARN Circular/genética , Transcriptoma , Gossypium/crecimiento & desarrollo , Gossypium/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , ARN Circular/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
6.
Plants (Basel) ; 9(4)2020 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-32230872

RESUMEN

MYB transcription factors (TFs) make up one of the most important TF families in plants. These proteins play crucial roles in processes related to development, metabolism, and stimulus-response; however, very few studies have been reported for the characterization of MYB TFs from banana. The current study identified 305 and 251 MYB genes from Musa acuminata and Musa balbisiana, respectively. Comprehensive details of MYBs are reported in terms of gene structure, protein domain, chromosomal localization, phylogeny, and expression patterns. Based on the exon-intron arrangement, these genes were classified into 12 gene models. Phylogenetic analysis of MYBs involving both species of banana, Oryza sativa, and Arabidopsis thaliana distributed these genes into 27 subfamilies. This highlighted not only the conservation, but also the gain/loss of MYBs in banana. Such genes are important candidates for future functional investigations. The MYB genes in both species exhibited a random distribution on chromosomes with variable densities. Estimation of gene duplication events revealed that segmental duplications represented the major factor behind MYB gene family expansion in banana. Expression profiles of MYB genes were also explored for their potential involvement in acetylene response or development. Collectively, the current comprehensive analysis of MYB genes in both species of banana will facilitate future functional studies.

7.
Plants (Basel) ; 9(1)2020 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-31968683

RESUMEN

The ethylene-insensitive3-like/ethylene-insensitive3 (EIL/EIN3) protein family can serve as a crucial factor for plant growth and development under diverse environmental conditions. EIL/EIN3 protein is a form of a localized nuclear protein with DNA-binding activity that potentially contributes to the intricate network of primary and secondary metabolic pathways of plants. In light of recent research advances, next-generation sequencing (NGS) and novel bioinformatics tools have provided significant breakthroughs in the study of the EIL/EIN3 protein family in cotton. In turn, this paved the way to identifying and characterizing the EIL/EIN3 protein family. Hence, the high-throughput, rapid, and cost-effective meta sequence analyses have led to a remarkable understanding of protein families in addition to the discovery of novel genes, enzymes, metabolites, and other biomolecules of the higher plants. Therefore, this work highlights the recent advance in the genomic-sequencing analysis of higher plants, which has provided a plethora of function profiles of the EIL/EIN3 protein family. The regulatory role and crosstalk of different metabolic pathways, which are apparently affected by these transcription factor proteins in one way or another, are also discussed. The ethylene hormone plays an important role in the regulation of reactive oxygen species in plants under various environmental stress circumstances. EIL/EIN3 proteins are the key ethylene-signaling regulators and play important roles in promoting cotton fiber developmental stages. However, the function of EIL/EIN3 during initiation and early elongation stages of cotton fiber development has not yet been fully understood. The results provided valuable information on cotton EIL/EIN3 proteins, as well as a new vision into the evolutionary relationships of this gene family in cotton species.

8.
BMC Plant Biol ; 19(1): 400, 2019 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-31510939

RESUMEN

BACKGROUND: C2H2-zinc finger protein family is commonly found in the plant, and it is known as the key actors in the regulation of transcription and vital component of chromatin structure. A large number of the C2H2-zinc finger gene members have not been well characterized based on their functions and structure in cotton. However, in other plants, only a few C2H2-zinc finger genes have been studied. RESULTS: In this work, we performed a comprehensive analysis and identified 386, 196 and 195 C2H2-zinc finger genes in Gossypium hirsutum (upland cotton), Gossypium arboreum and Gossypium raimondii, respectively. Phylogenetic tree analysis of the C2H2-zinc finger proteins encoding the C2H2-zinc finger genes were classified into seven (7) subgroups. Moreover, the C2H2-zinc finger gene members were distributed in all cotton chromosomes though with asymmetrical distribution patterns. All the orthologous genes were detected between tetraploid and the diploid cotton, with 154 orthologous genes pair detected between upland cotton and Gossypium arboreum while 165 orthologous genes were found between upland cotton and Gossypium raimondii. Synonymous (Ks) and non-synonymous (Ka) nucleotide substitution rates (Ka/Ks) analysis indicated that the cotton C2H2-zinc finger genes were highly influenced mainly by negative selection, which maintained their protein levels after the duplication events. RNA-seq data and RT-qPCR validation of the RNA seq result revealed differential expression pattern of some the C2H2-zinc finger genes at different stages of cotton fiber development, an indication that the C2H2-zinc finger genes play an important role in initiating and regulating fiber development in cotton. CONCLUSIONS: This study provides a strong foundation for future practical genome research on C2H2-zinc finger genes in upland cotton. The expression levels of C2H2-zinc finger genes family is a pointer of their involvement in various biochemical and physiological functions which are directly related to cotton fiber development during initiation and elongation stages. This work not only provides a basis for determining the nominal role of the C2H2-zinc finger genes in fiber development but also provide valuable information for characterization of potential candidate genes involved in regulation of cotton fiber development.


Asunto(s)
Genoma de Planta , Gossypium/genética , Proteínas de Plantas/genética , Factores de Transcripción/genética , Perfilación de la Expresión Génica , Gossypium/crecimiento & desarrollo , Familia de Multigenes , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Dedos de Zinc
9.
BMC Genomics ; 20(1): 661, 2019 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-31426741

RESUMEN

BACKGROUND: Long non-coding RNAs (LncRNAs) are part of genes, which are not translated into proteins and play a vital role in plant growth and development. Nevertheless, the presence of LncRNAs and how they functions in Ligon-lintless-1 mutant during the early cessation of cotton fiber development are still not well understood. In order to investigate the function of LncRNAs in cotton fiber development, it is necessary and important to identify LncRNAs and their potential roles in fiber cell development. RESULTS: In this work, we identified 18,333 LncRNAs, with the proportion of long intergenic noncoding RNAs (LincRNAs) (91.5%) and anti-sense LncRNAs (8.5%), all transcribed from Ligon-lintless-1 (Li1) and wild-type (WT). Expression differences were detected between Ligon-lintless-1 and wild-type at 0 and 8 DPA (day post anthesis). Pathway analysis and Gene Ontology based on differentially expressed LncRNAs on target genes, indicated fatty acid biosynthesis and fatty acid elongation being integral to lack of fiber in mutant cotton. The result of RNA-seq and RT-qPCR clearly singles out two potential LncRNAs, LNC_001237 and LNC_017085, to be highly down-regulated in the mutant cotton. The two LncRNAs were found to be destabilized or repressed by ghr-miR2950. Both RNA-seq analysis and RT-qPCR results in Ligon-lintless-1 mutant and wild-type may provide strong evidence of LNC_001237, LNC_017085 and ghr-miR2950 being integral molecular elements participating in various pathways of cotton fiber development. CONCLUSION: The results of this study provide fundamental evidence for the better understanding of LncRNAs regulatory role in the molecular pathways governing cotton fiber development. Further research on designing and transforming LncRNAs will help not only in the understanding of their functions but will also in the improvement of fiber quality.


Asunto(s)
Gossypium/crecimiento & desarrollo , Gossypium/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Fibra de Algodón , Ácidos Grasos/metabolismo , Regulación de la Expresión Génica de las Plantas , Ontología de Genes , Gossypium/metabolismo , MicroARNs/metabolismo , Mutación , ARN Mensajero/metabolismo , RNA-Seq , Transducción de Señal , Transcriptoma
10.
Mol Genet Genomics ; 294(1): 23-34, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30159616

RESUMEN

Transcripts of uncertain coding potential (TUCP) are part of the LncRNAs, which encode some polypeptides. However, the abundance of TUCP transcripts and their roles in Ligon-linless-1 (Li-1) cotton mutant during the early termination of fiber development are still not documented. Li-1 mutant is one of the excellent modules for investigating fiber elongation processes due to its unique fiber developmental stages. To examine the function of TUCP in cotton fiber development, it is important to identify TUCPs and their involvement in fiber development. In this study, we found that 11104 TUCP transcripts were removed by coding potential criteria of Pfam domain scan. Additionally, differential expression levels of TUCP transcripts were detected between Li-1 mutant and the wild-type (WT), which imply their possible functions in cotton fiber development. These results further revealed that a great number of differentially expressed TUCP transcripts in cotton were identified at 8 DPA, followed by 0 DPA and stem. However, these might explain an undesirable function in cotton fiber development. The gene ontology and pathway analysis, based on differential expression patterns of TUCP transcripts on targeted genes, identified the transport process, cytoskeleton structure, membrane permeability and fatty acids. These give new insight into significant involvement in early cessation of cotton fiber development and abnormal stem. The RNA-seq and qRT-PCR expression analyses of TUCP transcripts evidently singled out three possible genes, TUCP_010675, TUCP_001475, TUCP_009444 and other targeted mRNAs. The expression pattern of TUCP transcripts and their mRNA targets provided valuable evidence for further investigations on the biological functions of TUCP in cotton fiber development. The study findings may serve as a useful tool for comparative analysis of TUCP transcripts in cotton species and assist in selection of the applicable candidate genes for further functional analyses, genetic improvement and genetic engineering of cotton fiber development.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Gossypium/crecimiento & desarrollo , Mutación , ARN Largo no Codificante/genética , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Gossypium/genética , Proteínas de Plantas/genética , ARN de Planta/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ARN
11.
Genome ; 61(7): 539-547, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29852082

RESUMEN

WD40 repeat proteins are largely distributed across the plant kingdom and play an important role in diverse biological activities. In this work, we performed genome-wide identification, characterization, and expression level analysis of WD40 genes in cotton. A total of 579, 318, and 313 WD40 genes were found in Gossypium hirsutum, G. arboreum, and G. raimondii, respectively. Based on phylogenetic tree analyses, WD40 genes were divided into 11 groups with high similarities in exon/intron features and protein domains within the group. Expression analysis of WD40 genes showed differential expression at different stages of cotton fiber development (0 and 8 DPA) and cotton stem. A number of miRNAs were identified to target WD40 genes that are significantly involved in cotton fiber development during the initiation and elongation stages. These include miR156, miR160, miR162, miR164, miR166, miR167, miR169, miR171, miR172, miR393, miR396, miR398, miR2950, and miR7505. The findings provide a stronger indication of WD40 gene function and their involvement in the regulation of cotton fiber development during the initiation and elongation stages.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Genoma de Planta/genética , Gossypium/genética , Familia de Multigenes , Proteínas de Plantas/genética , Fibra de Algodón , Perfilación de la Expresión Génica/métodos , Gossypium/clasificación , MicroARNs/genética , Filogenia , Proteínas de Plantas/clasificación , ARN de Planta/genética , Especificidad de la Especie , Repeticiones WD40/genética
12.
BMC Genet ; 19(1): 6, 2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29334890

RESUMEN

BACKGROUND: Late embryogenesis abundant (LEA) proteins are large groups of hydrophilic proteins with major role in drought and other abiotic stresses tolerance in plants. In-depth study and characterization of LEA protein families have been carried out in other plants, but not in upland cotton. The main aim of this research work was to characterize the late embryogenesis abundant (LEA) protein families and to carry out gene expression analysis to determine their potential role in drought stress tolerance in upland cotton. Increased cotton production in the face of declining precipitation and availability of fresh water for agriculture use is the focus for breeders, cotton being the backbone of textile industries and a cash crop for many countries globally. RESULTS: In this work, a total of 242, 136 and 142 LEA genes were identified in G. hirsutum, G. arboreum and G. raimondii respectively. The identified genes were classified into eight groups based on their conserved domain and phylogenetic tree analysis. LEA 2 were the most abundant, this could be attributed to their hydrophobic character. Upland cotton LEA genes have fewer introns and are distributed in all chromosomes. Majority of the duplicated LEA genes were segmental. Syntenic analysis showed that greater percentages of LEA genes are conserved. Segmental gene duplication played a key role in the expansion of LEA genes. Sixty three miRNAs were found to target 89 genes, such as miR164, ghr-miR394 among others. Gene ontology analysis revealed that LEA genes are involved in desiccation and defense responses. Almost all the LEA genes in their promoters contained ABRE, MBS, W-Box and TAC-elements, functionally known to be involved in drought stress and other stress responses. Majority of the LEA genes were involved in secretory pathways. Expression profile analysis indicated that most of the LEA genes were highly expressed in drought tolerant cultivars Gossypium tomentosum as opposed to drought susceptible, G. hirsutum. The tolerant genotypes have a greater ability to modulate genes under drought stress than the more susceptible upland cotton cultivars. CONCLUSION: The finding provides comprehensive information on LEA genes in upland cotton, G. hirsutum and possible function in plants under drought stress.


Asunto(s)
Gossypium/genética , Gossypium/fisiología , Proteínas de Plantas/genética , Semillas/genética , Transcriptoma , Sequías , Duplicación de Gen , Gossypium/química , Gossypium/clasificación , Filogenia , Proteínas de Plantas/metabolismo , Semillas/química , Sintenía
13.
BMC Genet ; 17(1): 129, 2016 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-27613381

RESUMEN

BACKGROUND: MYB family proteins are one of the most abundant transcription factors in the cotton plant and play diverse roles in cotton growth and evolution. Previously, few studies have been conducted in upland cotton, Gossypium hirsutum. The recent release of the G. hirsutum genome sequence provides a great opportunity to identify and characterize the entire upland cotton MYB protein family. RESULTS: In this study, we undertook a comprehensive genome-wide characterization and expression analysis of the MYB transcription factor family during cotton fiber development. A total of 524 non-redundant cotton MYB genes, among 1986 MYB and MYB-related putative proteins, were identified and classified into four subfamilies including 1R-MYB, 2R-MYB, 3R-MYB, and 4R-MYB. Based on phylogenetic tree analysis, MYB transcription factors were divided into 16 subgroups. The results showed that the majority (69.1 %) of GhMYBs genes belong to the 2R-MYB subfamily in upland cotton. CONCLUSION: Our comparative genomics analysis has provided novel insights into the roles of MYB transcription factors in cotton fiber development. These results provide the basis for a greater understanding of MYB regulatory networks and to develop new approaches to improve cotton fiber development.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Estudio de Asociación del Genoma Completo , Gossypium/genética , Gossypium/metabolismo , Proteínas Proto-Oncogénicas c-myb/metabolismo , Mapeo Cromosómico , Biología Computacional/métodos , Secuencia Conservada , Fibra de Algodón , Bases de Datos de Ácidos Nucleicos , Perfilación de la Expresión Génica , Estudios de Asociación Genética , Genoma de Planta , Genómica/métodos , Gossypium/clasificación , Secuenciación de Nucleótidos de Alto Rendimiento , Anotación de Secuencia Molecular , Familia de Multigenes , Motivos de Nucleótidos , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...