Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Environ Manage ; 250: 109439, 2019 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-31499461

RESUMEN

Ecosystem restoration is gaining political and economic support worldwide, but its exact targets and costs often remain unclear. A key issue, both for predicting restoration success and assessing the costs, is the uncertainty of post-restoration development of the ecosystem. A specific combination of uncertainties emerges when ecosystem restoration would negatively affect pre-restoration species conservation values. Such dilemma appears to be common, but largely ignored in restoration planning; for example, in historically degraded forests, wetlands and grasslands that provide novel habitats for some threatened species. We present a framework of linked options for resolving the dilemma, and exemplify its application in extensive mire restoration in Estonia. The broad options include: redistributing the risks by timing; relocating restoration sites; modifying restoration techniques; and managing for future habitats of the species involved. In Estonia, we assessed these options based on spatially explicit mapping of expected future states of the ecosystem, their uncertainty, and the distribution of species at risk. Such planning documentation, combined with follow-up monitoring and experimentation, can be used for adaptive management, by funding organizations and for academic research.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Animales , Especies en Peligro de Extinción , Estonia , Humedales
2.
Nat Commun ; 9(1): 1748, 2018 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-29700326

RESUMEN

The original version of this Article contained an error in the first sentence of the Acknowledgements section, which incorrectly referred to the Estonian Research Council grant identifier as "PUTJD618". The correct version replaces the grant identifier with "PUTJD619". This has been corrected in both the PDF and HTML versions of the Article.

3.
Nat Commun ; 9(1): 1135, 2018 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-29555906

RESUMEN

Nitrous oxide (N2O) is a powerful greenhouse gas and the main driver of stratospheric ozone depletion. Since soils are the largest source of N2O, predicting soil response to changes in climate or land use is central to understanding and managing N2O. Here we find that N2O flux can be predicted by models incorporating soil nitrate concentration (NO3-), water content and temperature using a global field survey of N2O emissions and potential driving factors across a wide range of organic soils. N2O emissions increase with NO3- and follow a bell-shaped distribution with water content. Combining the two functions explains 72% of N2O emission from all organic soils. Above 5 mg NO3--N kg-1, either draining wet soils or irrigating well-drained soils increases N2O emission by orders of magnitude. As soil temperature together with NO3- explains 69% of N2O emission, tropical wetlands should be a priority for N2O management.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...