Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Mater ; 36(24): e2311559, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38520395

RESUMEN

It is shown that structural disorder-in the form of anisotropic, picoscale atomic displacements-modulates the refractive index tensor and results in the giant optical anisotropy observed in BaTiS3, a quasi-1D hexagonal chalcogenide. Single-crystal X-ray diffraction studies reveal the presence of antipolar displacements of Ti atoms within adjacent TiS6 chains along the c-axis, and threefold degenerate Ti displacements in the a-b plane. 47/49Ti solid-state NMR provides additional evidence for those Ti displacements in the form of a three-horned NMR lineshape resulting from a low symmetry local environment around Ti atoms. Scanning transmission electron microscopy is used to directly observe the globally disordered Ti a-b plane displacements and find them to be ordered locally over a few unit cells. First-principles calculations show that the Ti a-b plane displacements selectively reduce the refractive index along the ab-plane, while having minimal impact on the refractive index along the chain direction, thus resulting in a giant enhancement in the optical anisotropy. By showing a strong connection between structural disorder with picoscale displacements and the optical response in BaTiS3, this study opens a pathway for designing optical materials with high refractive index and functionalities such as large optical anisotropy and nonlinearity.

2.
Adv Mater ; 35(42): e2303588, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37529860

RESUMEN

Materials with large birefringence (Δn, where n is the refractive index) are sought after for polarization control (e.g., in wave plates, polarizing beam splitters, etc.), nonlinear optics, micromanipulation, and as a platform for unconventional light-matter coupling, such as hyperbolic phonon polaritons. Layered 2D materials can feature some of the largest optical anisotropy; however, their use in most optical systems is limited because their optical axis is out of the plane of the layers and the layers are weakly attached. This work demonstrates that a bulk crystal with subtle periodic modulations in its structure-Sr9/8 TiS3 -is transparent and positive-uniaxial, with extraordinary index ne = 4.5 and ordinary index no = 2.4 in the mid- to far-infrared. The excess Sr, compared to stoichiometric SrTiS3 , results in the formation of TiS6 trigonal-prismatic units that break the chains of face-sharing TiS6 octahedra in SrTiS3 into periodic blocks of five TiS6 octahedral units. The additional electrons introduced by the excess Sr form highly oriented electron clouds, which selectively boost the extraordinary index ne and result in record birefringence (Δn > 2.1 with low loss). The connection between subtle structural modulations and large changes in refractive index suggests new categories of anisotropic materials and also tunable optical materials with large refractive-index modulation.

4.
Nano Lett ; 22(1): 6-13, 2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-34958595

RESUMEN

An induced-transmission filter (ITF) uses an ultrathin metallic layer positioned at an electric-field node within a dielectric thin-film bandpass filter to select one transmission band while suppressing other bands that would have been present without the metal layer. We introduce a switchable mid-infrared ITF where the metal can be "switched on and off", enabling the modulation of the filter response from a single band to multiband. The switching is enabled by the reversible insulator-to-metal phase transition of a subwavelength film of vanadium dioxide (VO2). Our work generalizes the ITF─a niche type of bandpass filter─into a new class of tunable devices. Furthermore, our fabrication process─which begins with thin-film VO2 on a suspended membrane─enables the integration of VO2 into any thin-film assembly that is compatible with physical vapor deposition processes and is thus a new platform for realizing tunable thin-film filters.

5.
Langmuir ; 37(30): 9222-9231, 2021 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-34279965

RESUMEN

Functionalization of diamond surfaces with TEMPO and other surface paramagnetic species represents one approach to the implementation of novel chemical detection schemes that make use of shallow quantum color defects such as silicon-vacancy (SiV) and nitrogen-vacancy (NV) centers. Yet, prior approaches to quantum-based chemical sensing have been hampered by the absence of high-quality surface functionalization schemes for linking radicals to diamond surfaces. Here, we demonstrate a highly controlled approach to the functionalization of diamond surfaces with carboxylic acid groups via all-carbon tethers of different lengths, followed by covalent chemistry to yield high-quality, TEMPO-modified surfaces. Our studies yield estimated surface densities of 4-amino-TEMPO of approximately 1.4 molecules nm-2 on nanodiamond (varying with molecular linker length) and 3.3 molecules nm-2 on planar diamond. These values are higher than those reported previously using other functionalization methods. The ζ-potential of nanodiamonds was used to track reaction progress and elucidate the regioselectivity of the reaction between ethenyl and carboxylate groups and surface radicals.

6.
Proc Natl Acad Sci U S A ; 118(15)2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33833057

RESUMEN

Structural characterization of biologically formed materials is essential for understanding biological phenomena and their enviro-nment, and for generating new bio-inspired engineering concepts. For example, nacre-the inner lining of some mollusk shells-encodes local environmental conditions throughout its formation and has exceptional strength due to its nanoscale brick-and-mortar structure. This layered structure, comprising alternating transparent aragonite (CaCO3) tablets and thinner organic polymer layers, also results in stunning interference colors. Existing methods of structural characterization of nacre rely on some form of cross-sectional analysis, such as scanning or transmission electron microscopy or polarization-dependent imaging contrast (PIC) mapping. However, these techniques are destructive and too time- and resource-intensive to analyze large sample areas. Here, we present an all-optical, rapid, and nondestructive imaging technique-hyperspectral interference tomography (HIT)-to spatially map the structural parameters of nacre and other disordered layered materials. We combined hyperspectral imaging with optical-interference modeling to infer the mean tablet thickness and its disorder in nacre across entire mollusk shells from red and rainbow abalone (Haliotis rufescens and Haliotis iris) at various stages of development. We observed that in red abalone, unexpectedly, nacre tablet thickness decreases with age of the mollusk, despite roughly similar appearance of nacre at all ages and positions in the shell. Our rapid, inexpensive, and nondestructive method can be readily applied to in-field studies.


Asunto(s)
Exoesqueleto/química , Gastrópodos/metabolismo , Nácar/análisis , Imagen Óptica/métodos , Exoesqueleto/metabolismo , Animales , Gastrópodos/citología , Imagen Óptica/instrumentación , Imagen Óptica/normas , Sensibilidad y Especificidad
7.
Nano Lett ; 20(12): 8483-8486, 2020 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-33197190

RESUMEN

We propose a new type of reflective polarizer based on polarization-dependent coupling to surface plasmon polaritons (SPPs) from free space. This inexpensive polarizer is relatively narrowband but features an extinction ratio of up to 1000 with efficiency of up to 95% for the desired polarization (numbers from a calculation) and thus can be stacked to achieve extinction ratios of 106 or more. As a proof of concept, we experimentally realized a polarizer based on nanoporous aluminum oxide that operates around a wavelength of 10.6 µm, corresponding to the output of a CO2 laser, using aluminum anodization, a low-cost electrochemical process.

8.
Proc Natl Acad Sci U S A ; 116(52): 26402-26406, 2019 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-31848248

RESUMEN

Thermal emission is the process by which all objects at nonzero temperatures emit light and is well described by the Planck, Kirchhoff, and Stefan-Boltzmann laws. For most solids, the thermally emitted power increases monotonically with temperature in a one-to-one relationship that enables applications such as infrared imaging and noncontact thermometry. Here, we demonstrated ultrathin thermal emitters that violate this one-to-one relationship via the use of samarium nickel oxide (SmNiO3), a strongly correlated quantum material that undergoes a fully reversible, temperature-driven solid-state phase transition. The smooth and hysteresis-free nature of this unique insulator-to-metal phase transition enabled us to engineer the temperature dependence of emissivity to precisely cancel out the intrinsic blackbody profile described by the Stefan-Boltzmann law, for both heating and cooling. Our design results in temperature-independent thermally emitted power within the long-wave atmospheric transparency window (wavelengths of 8 to 14 µm), across a broad temperature range of ∼30 °C, centered around ∼120 °C. The ability to decouple temperature and thermal emission opens a gateway for controlling the visibility of objects to infrared cameras and, more broadly, opportunities for quantum materials in controlling heat transfer.

9.
Light Sci Appl ; 8: 51, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31231517

RESUMEN

We demonstrate the generation of nanosecond mid-infrared pulses via fast modulation of thermal emissivity enabled by the absorption of visible pump pulses in unpatterned silicon and gallium arsenide. The free-carrier dynamics in these materials result in nanosecond-scale modulation of thermal emissivity, which leads to nanosecond pulsed thermal emission. To our knowledge, the nanosecond thermal-emissivity modulation in this work is three orders of magnitude faster than what has been previously demonstrated. We also indirectly observed subnanosecond thermal pulses from hot carriers in semiconductors. The experiments are well described by our multiphysics model. Our method of converting visible pulses into the mid infrared using modulated emissivity obeys different scaling laws and can have significant wavelength tunability compared to approaches based on conventional nonlinearities.

10.
Sci Rep ; 8(1): 11971, 2018 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-30097592

RESUMEN

To see color, the human visual system combines the response of three types of cone cells in the retina-a compressive process that discards a significant amount of spectral information. Here, we present designs based on thin-film optical filters with the goal of enhancing human color vision by breaking its inherent binocular redundancy, providing different spectral content to each eye. We fabricated a set of optical filters that "splits" the response of the short-wavelength cone between the two eyes in individuals with typical trichromatic vision, simulating the presence of approximately four distinct cone types. Such an increase in the number of effective cone types can reduce the prevalence of metamers-pairs of distinct spectra that resolve to the same tristimulus values. This technique may result in an enhancement of spectral perception, with applications ranging from camouflage detection and anti-counterfeiting to new types of artwork and data visualization.


Asunto(s)
Visión de Colores , Disparidad Visual , Visión Binocular , Humanos , Método de Montecarlo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...