Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 16 de 16
1.
J Sci Food Agric ; 104(3): 1833-1842, 2024 Feb.
Article En | MEDLINE | ID: mdl-37884474

BACKGROUND: The large quantities of by-products generated in the coffee industry are a problem. Studies related to the biological potential of organic coffee husks are still limited. The aim of this work was to investigate the occurrence of phenolic compounds in organic coffee husks and to evaluate their potential as a source of bioactive dietary components. RESULTS: To achieve this objective, three extracts were prepared, namely extractable polyphenols (EPs), hydrolyzable non-extractable polyphenols (H-NEPs), and non-extractable polyphenols (NEPs). These extracts were characterized and evaluated for their bioactive properties after simulated gastrointestinal digestion. The results show that the extraction process affected the occurrence of phenols from coffee peels, especially for caffeic acid, gallic acid, and chlorogenic acid. The free and bound polyphenols found in the extracts and digests not only showed antioxidant properties against 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), ferric reducing antioxidant power (FRAP), and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals but were also strongly bioavailable and had good anticoagulant potential. CONCLUSION: These results highlight the potential health benefits of phytochemicals from coffee husks and open new perspectives for the use of such compounds in dietary supplements. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Antioxidants , Coffea , Antioxidants/chemistry , Coffea/metabolism , Phenols/chemistry , Polyphenols , Digestion , Plant Extracts/chemistry
2.
Int J Mol Sci ; 24(13)2023 Jun 25.
Article En | MEDLINE | ID: mdl-37445794

Melanoma is difficult to treat with chemotherapy, prompting the need for new treatments. Protease inhibitors have emerged as promising candidates as tumor cell proteases promote metastasis. Researchers have developed a chimeric form of the Bauhinia bauhinioides kallikrein inhibitor, rBbKIm, which has shown negative effects on prostate tumor cell lines DU145 and PC3. Crataeva tapia bark lectin, CrataBL, targets sulfated oligosaccharides in glycosylated proteins and has also demonstrated deleterious effects on prostate and glioblastoma tumor cells. However, neither rBbKIm nor its derived peptides affected the viability of SK-MEL-28, a melanoma cell line, while CrataBL decreased viability by over 60%. Two peptides, Pep. 26 (Ac-Q-N-S-S-L-K-V-V-P-L-NH2) and Pep. 27 (Ac-L-P-V-V-K-L-S-S-N-Q-NH2), were also tested. Pep. 27 suppressed cell migration and induced apoptosis when combined with vemurafenib, while Pep. 26 inhibited cell migration and reduced nitric oxide and the number of viable cells. Vemurafenib, a chemotherapy drug used to treat melanoma, was found to decrease the release of interleukin 8 and PDGF-AB/BB cytokines and potentiated the effects of proteins and peptides in reducing these cytokines. These findings suggest that protease inhibitors may be effective in blocking melanoma cells and highlight the potential of CrataBL and its derived peptides.


Melanoma , Male , Humans , Vemurafenib/pharmacology , Melanoma/drug therapy , Cell Line, Tumor , Apoptosis , Cytokines/pharmacology , Protease Inhibitors/pharmacology
3.
J Clin Med ; 12(5)2023 Feb 23.
Article En | MEDLINE | ID: mdl-36902597

Several plant protein inhibitors with anticoagulant properties have been studied and characterized, including the Delonix regia trypsin inhibitor (DrTI). This protein inhibits serine proteases (trypsin) and enzymes directly involved in coagulation, such as plasma kallikrein, factor XIIa, and factor XIa. In this study, we evaluated the effects of two new synthetic peptides derived from the primary sequence of DrTI in coagulation and thrombosis models to understand the mechanisms involved in the pathophysiology of thrombus formation as well as in the development of new antithrombotic therapies. Both peptides acted on in vitro hemostasis-related parameters, showing promising results, prolonging the Partially Activated Thromboplastin Time (aPTT) and inhibited platelet aggregation induced by adenosine diphosphate (ADP) and arachidonic acid. In murine models, for arterial thrombosis induced by photochemical injury, and platelet-endothelial interactions monitored by intravital microscopy, both peptides at doses of 0.5 mg/kg significantly extended the time of artery occlusion and modified the platelet adhesion and aggregation pattern with no changes in bleeding time, demonstrating the high biotechnological potential of both molecules.

4.
Sci Rep ; 13(1): 2092, 2023 02 06.
Article En | MEDLINE | ID: mdl-36746990

The pathogenesis of Takayasu arteritis (TAK) is poorly understood and no previous studies have analyzed monocytes in TAK. This study evaluated monocyte subsets and monocyte-related chemokines in the peripheral blood of TAK patients and healthy controls (HC). Monocyte subsets were identified as classical (CD14+CD16-), intermediate (CD14+CD16dim), and non-classical (CD14dimCD16high) in the peripheral blood. The chemokines CCL (C-C chemokine ligand)2, CCL3, CCL4, CCL5, CCL7, CXCL (C-X-C motif ligand)10, and CX3CL (C-X3-C motif ligand)1 were measured in the sera. Thirty-two TAK patients and 30 HC were evaluated. Intermediate monocytes were higher in TAK than HC [25.0 cells ×106/L (16.7-52.0) vs. 17.2 cells ×106/L (9.2-25.3); p = 0.014]. Active disease was associated with monocytosis (p = 0.004), increased classical (p = 0.003), and intermediate (p < 0.001) subsets than HC. Prednisone reduced the percentage of non-classical monocytes (p = 0.011). TAK patients had lower CCL3 (p = 0.033) and CCL4 (p = 0.023) levels than HC, whereas CCL22 levels were higher in active TAK compared to the remission state (p = 0.008). Glucocorticoids were associated with lower CXCL10 levels (p = 0.012). In TAK, CCL4 correlated with total (Rho = 0.489; p = 0.005), classical and intermediate monocytes (Rho = 0.448; p = 0.010 and Rho = 0.412; p = 0.019). In conclusion, TAK is associated with altered counts of monocyte subsets in the peripheral blood compared to HC and CCL22 is the chemokine with the strongest association with active disease in TAK.


Monocytes , Takayasu Arteritis , Humans , Monocytes/pathology , Lipopolysaccharide Receptors , Takayasu Arteritis/pathology , Ligands , Chemokines , Receptors, IgG
5.
Thromb J ; 21(1): 1, 2023 Jan 02.
Article En | MEDLINE | ID: mdl-36593467

BACKGROUND: (p-BthTX-I)2 K, a dimeric analog peptide derived from the C-terminal region of phospholipase A2-like bothropstoxin-I (p-BthTX-I), is resistant to plasma proteolysis and inhibits severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strains with weak cytotoxic effects. Complications of SARS-CoV-2 infection include vascular problems and increased risk of thrombosis; therefore, studies to identify new drugs for treating SARS-CoV-2 infections that also inhibit thrombosis and minimize the risk of bleeding are required. OBJECTIVES: To determine whether (p-BthTX-I)2 K affects the hemostatic system. METHODS: Platelet aggregation was induced by collagen, arachidonic acid, and adenosine diphosphate (ADP) in the Chronolog Lumi-aggregometer. The coagulation activity was evaluated by determining activated partial thromboplastin clotting time (aPTT) and prothrombin time (PT) with (p-BthTX-I)2 K (5.0-434.5 µg) or 0.9% NaCl. Arterial thrombosis was induced with a 540 nm laser and 3.5-20 mg kg- 1 Rose Bengal in the carotid artery of male C57BL/6J mice using (p-BthTX-I)2 K. Bleeding time was determined in mouse tails immersed in saline at 37 °C after (p-BthTX-I)2 K (4.0 mg/kg and 8.0 mg/kg) or saline administration. RESULTS: (p-BthTX-I)2 K prolonged the aPTT and PT by blocking kallikrein and FXa-like activities. Moreover, (p-BthTX-I)2 K inhibited ADP-, collagen-, and arachidonic acid-induced platelet aggregation in a dose-dependent manner. Further, low concentrations of (p-BthTX-I)2 K extended the time to artery occlusion by the formed thrombus. However, (p-BthTX-I)2 K did not prolong the bleeding time in the mouse model of arterial thrombosis. CONCLUSION: These results demonstrate the antithrombotic activity of the peptide (p-BthTX-I)2 K possibly by kallikrein inhibition, suggesting its strong biotechnological potential.

6.
Front Immunol ; 13: 1038332, 2022.
Article En | MEDLINE | ID: mdl-36389843

Trypanosoma cruzi is the causative protozoan of Chagas' Disease, a neglected tropical disease that affects 6-7 million people worldwide. Interaction of the parasite with the host immune system is a key factor in disease progression and chronic symptoms. Although the human immune system is capable of controlling the disease, the parasite has numerous evasion mechanisms that aim to maintain intracellular persistence and survival. Due to the pronounced genetic variability of T. cruzi, co-infections or mixed infections with more than one parasite strain have been reported in the literature. The intermodulation in such cases is unclear. This study aimed to evaluate the co-infection of T. cruzi strains G and CL compared to their individual infections in human macrophages derived from THP-1 cells activated by classical or alternative pathways. Flow cytometry analysis demonstrated that trypomastigotes were more infective than extracellular amastigotes (EAs) and that strain G could infect more macrophages than strain CL. Classically activated macrophages showed lower number of infected cells and IL-4-stimulated cells displayed increased CL-infected macrophages. However, co-infection was a rare event. CL EAs decreased the production of reactive oxygen species (ROS), whereas G trypomastigotes displayed increased ROS detection in classically activated cells. Co-infection did not affect ROS production. Monoinfection by strain G or CL mainly induced an anti-inflammatory cytokine profile by decreasing inflammatory cytokines (IFN-γ, TNF-α, IL-1ß) and/or increasing IL-4, IL-10, and TGF-ß. Co-infection led to a predominant inflammatory milieu, with reduced IL-10 and TGF-ß, and/or promotion of IFN-γ and IL-1ß release. Infection by strain G reduced activation of intracellular signal transducer and activator of transcription (STAT) factors. In EAs, monoinfections impaired STAT-1 activity and promoted phosphorylation of STAT-3, both changes may prolong cell survival. Coinfected macrophages displayed pronounced activation of all STATs examined. These activations likely promoted parasite persistence and survival of infected cells. The collective results demonstrate that although macrophages respond to both strains, T. cruzi can modulate the intracellular environment, inducing different responses depending on the strain, parasite infective form, and co-infection or monoinfection. The modulation influences parasite persistence and survival of infected cells.


Chagas Disease , Coinfection , Trypanosoma cruzi , Humans , Coinfection/metabolism , Interleukin-10/metabolism , Interleukin-4/metabolism , Macrophages , Reactive Oxygen Species/metabolism , Transforming Growth Factor beta/metabolism , STAT1 Transcription Factor/metabolism , STAT3 Transcription Factor/metabolism , STAT6 Transcription Factor/metabolism
7.
Molecules ; 27(9)2022 May 05.
Article En | MEDLINE | ID: mdl-35566311

Cell adhesion and migration are crucial for cancer progression and malignancy. Drugs available for the treatment of metastatic melanoma are expensive and unfit for certain patients. Therefore, there is still a need to identify new drugs that block tumor cell development. We investigated the effects of Enterolobium contortisiliquum trypsin inhibitor (EcTI), a protease inhibitor, on cell viability, cell migration, invasion, cell adhesion, and cell death (hallmarks of cancer) in vitro using human melanoma cells (SK-MEL-28 and CHL-1). Although EcTI did not affect non-tumor cells, it significantly inhibited the proliferation, migration, invasion, and adhesion of melanoma cells. Investigation of the underlying mechanisms revealed that EcTI triggered apoptosis and nuclear shrinkage, increased PI uptake, activated effector caspases-3/7, and produced reactive oxygen species (ROS). Furthermore, EcTI disrupted the mitochondrial membrane potential, altered calcium homeostasis, and modified proteins associated with survival and apoptosis/autophagy regulation. Acridine orange staining indicated acidic vesicular organelle formation upon EcTI treatment, demonstrating a cell death display. Electronic microscopy corroborated the apoptotic pattern by allowing the visualization of apoptotic bodies, mitochondrial cristae disorganization, and autophagic vesicles. Taken together, these results provide new insights into the anti-cancer properties of the natural EcTI protein, establishing it as a promising new therapeutic drug for use in melanoma treatment.


Fabaceae , Melanoma , Apoptosis , Cell Line, Tumor , Cell Proliferation , Down-Regulation , Humans , Melanoma/metabolism , Neoplastic Processes , Protease Inhibitors/pharmacology , Protease Inhibitors/therapeutic use , Trypsin Inhibitors/pharmacology
8.
Molecules, v. 27, n. 9, 2956, mai. 2022
Article En | SES-SP, SESSP-IBPROD, SES-SP | ID: bud-4345

Cell adhesion and migration are crucial for cancer progression and malignancy. Drugs available for the treatment of metastatic melanoma are expensive and unfit for certain patients. Therefore, there is still a need to identify new drugs that block tumor cell development. We investigated the effects of Enterolobium contortisiliquum trypsin inhibitor (EcTI), a protease inhibitor, on cell viability, cell migration, invasion, cell adhesion, and cell death (hallmarks of cancer) in vitro using human melanoma cells (SK-MEL-28 and CHL-1). Although EcTI did not affect non-tumor cells, it significantly inhibited the proliferation, migration, invasion, and adhesion of melanoma cells. Investigation of the underlying mechanisms revealed that EcTI triggered apoptosis and nuclear shrinkage, increased PI uptake, activated effector caspases-3/7, and produced reactive oxygen species (ROS). Furthermore, EcTI disrupted the mitochondrial membrane potential, altered calcium homeostasis, and modified proteins associated with survival and apoptosis/autophagy regulation. Acridine orange staining indicated acidic vesicular organelle formation upon EcTI treatment, demonstrating a cell death display. Electronic microscopy corroborated the apoptotic pattern by allowing the visualization of apoptotic bodies, mitochondrial cristae disorganization, and autophagic vesicles. Taken together, these results provide new insights into the anti-cancer properties of the natural EcTI protein, establishing it as a promising new therapeutic drug for use in melanoma treatment.

9.
Front Cell Infect Microbiol ; 11: 756521, 2021.
Article En | MEDLINE | ID: mdl-34722343

Chagas' disease is a parasitosis caused by Trypanosoma cruzi, which affects approximately 8 million people worldwide. The balance between pro- and anti-inflammatory cytokines produced during immunological responses contributes to disease prognosis and progression. Parasite tissue persistence can induce chronic inflammatory stimuli, which can cause long-term tissue injury and fibrosis. Chronic Chagas' patients exhibit increased levels of interleukin (IL)-9, an important cytokine in the regulation of inflammatory and fibrogenic processes. Data on the role of IL-9 in other pathologies are sometimes contradictory, and few studies have explored this cytokine's influence in Chagas' disease pathology. Hence, the aim of this study was to evaluate the role of IL-9 in the progression of T. cruzi infection in vivo and in vitro. In vitro infection demonstrated that IL-9 reduced the number of infected cells and decreased the multiplication of intracellular amastigotes in both C2C12 myoblasts and bone marrow-derived macrophages. In myoblasts, the increased production of nitric oxide (NO) was essential for reduced parasite multiplication, whereas macrophage responses resulted in increased IL-6 and reduced TGF-ß levels, indicating that parasite growth restriction mechanisms induced by IL-9 were cell-type specific. Experimental infection of BALB/c mice with T. cruzi trypomastigotes of the Y strain implicated a major role of IL-9 during the chronic phase, as increased Th9 and Tc9 cells were detected among splenocytes; higher levels of IL-9 in these cell populations and increased cardiac IL-9 levels were detected compared to those of uninfected mice. Moreover, rIL9 treatment decreased serum IL-12, IL-6, and IL-10 levels and cardiac TNF-α levels, possibly attempting to control the inflammatory response. IL-9 neutralization increased cardiac fibrosis, synthesis of collagens I and III, and mastocyte recruitment in BALB/c heart tissue during the chronic phase. In conclusion, our data showed that IL-9 reduced the invasion and multiplication of T. cruzi in vitro, in both myoblasts and macrophages, favoring disease control through cell-specific mechanisms. In vivo, IL-9 was elevated during experimental chronic infection in BALB/c mice, and this cytokine played a protective role in the immunopathological response during this phase by controlling cardiac fibrosis and proinflammatory cytokine production.


Chagas Disease , Interleukin-9 , Trypanosoma cruzi , Animals , Cytokines , Humans , Mice , Mice, Inbred BALB C
10.
Plants (Basel) ; 9(12)2020 Nov 30.
Article En | MEDLINE | ID: mdl-33266031

Protease inhibitors are involved in the regulation of endogenous cysteine proteases during seed development and play a defensive role because of their ability to inhibit exogenous proteases such as those present in the digestive tracts of insects. Araucaria angustifolia seeds, which can be used in human and animal feed, were investigated for their potential for the development of agricultural biotechnology and in the field of human health. In the pine nuts extract, which blocked the activities of cysteine proteases, it was detected potent insecticidal activity against termites (Nasutitermes corniger) belonging to the most abundant termite genus in tropical regions. The cysteine inhibitor (AaCI-2S) was purified by ion-exchange, size exclusion, and reversed-phase chromatography. Its functional and structural stability was confirmed by spectroscopic and circular dichroism studies, and by detection of inhibitory activity at different temperatures and pH values. Besides having activity on cysteine proteases from C. maculatus digestive tract, AaCI-2S inhibited papain, bromelain, ficin, and cathepsin L and impaired cell proliferation in gastric and prostate cancer cell lines. These properties qualify A. angustifolia seeds as a protein source with value properties of natural insecticide and to contain a protease inhibitor with the potential to be a bioactive molecule on different cancer cells.

11.
Carbohydr Polym ; 247: 116671, 2020 Nov 01.
Article En | MEDLINE | ID: mdl-32829799

Heparin was immobilized on magnetic chitosan particles to be used as a tool for human plasma protein identification. Chitosan was magnetized by co-precipitation with Fe2+/Fe3+ (MAG-CH). Heparin was functionalized with carbodiimide and N-hydroxysuccinimide and covalently linked to MAG-CH (MAG-CH-hep). X-ray diffraction confirmed the presence of chitosan and Fe3O4 in MAG-CH. This particle exhibited superparamagnetism and size between 100-300 µm. Human plasma diluted with 10 mM phosphate buffer (pH 5.5) or 50 mM Tris-HCl buffer (pH 8.5) was incubated with MAG-CH-hep, and the proteins fixed were eluted with the same buffers containing increasing concentrations of NaCl. The proteins obtained were investigated by SDS-PAGE, LC/MS, and biological activity tests (PT, aPTT, and enzymatic chromogenic assay). Inhibitors of the serpin family, prothrombin, and human albumin were identified in this study. Therefore, MAG-CH-hep can be used to purify these proteins and presents the following advantages: low-cost synthesis, magnetic separation, ion-exchange purification, and reusability.


Blood Proteins/analysis , Chitosan/chemistry , Heparin/chemistry , Magnets , Adsorption , Humans
12.
J Med Food ; 22(12): 1294-1300, 2019 Dec.
Article En | MEDLINE | ID: mdl-31794688

Peptides from protein hydrolysate of a mixture of chicken combs and wattles (CCWs) were obtained through enzymatic hydrolysis, and their anticoagulant and inhibitory effects on angiotensin I-converting enzyme (ACE) were investigated. The protein hydrolysate exhibited anticoagulant capacity by the intrinsic pathway (activated partial thromboplastin time) and potent ACE-inhibitory activity. The peptides were sequenced by LC-MS to identify those with higher inhibitory potential. From the pool of sequenced peptides, the following three peptides were selected and synthesized based on their low molecular weight and the presence of amino acids with ACE-inhibitory potential at the C-terminus: peptide I (APGLPGPR), peptide II (Piro-GPPGPT), and peptide III (FPGPPGP). Peptide III (FPGPPGP) showed the highest ACE-inhibitory capacity among the peptides selected. In conclusion, a peptide (FPGPPGP) of unknown sequence was identified as having potent ACE-inhibitory capacity. This peptide originated from unconventional hydrolysates from poultry slaughter waste, including combs and wattles.


Angiotensin-Converting Enzyme Inhibitors/pharmacology , Anticoagulants/pharmacology , Comb and Wattles/chemistry , Peptides/pharmacology , Peptidyl-Dipeptidase A/drug effects , Amino Acid Sequence , Angiotensin-Converting Enzyme Inhibitors/isolation & purification , Animals , Chickens , Chromatography, Liquid , Humans , Hydrophobic and Hydrophilic Interactions , Molecular Weight , Peptides/chemistry , Peptides/isolation & purification , Protein Hydrolysates , Receptors for Activated C Kinase/chemistry , Receptors for Activated C Kinase/pharmacology , Thromboplastin
13.
Molecules ; 24(11)2019 Jun 04.
Article En | MEDLINE | ID: mdl-31167364

Currently available drugs for treatment of glioblastoma, the most aggressive brain tumor, remain inefficient, thus a plethora of natural compounds have already been shown to have antimalignant effects. However, these have not been tested for their impact on tumor cells in their microenvironment-simulated cell models, e.g., mesenchymal stem cells in coculture with glioblastoma cell U87 (GB). Mesenchymal stem cells (MSC) chemotactically infiltrate the glioblastoma microenvironment. Our previous studies have shown that bone-marrow derived MSCs impair U87 growth and invasion via paracrine and cell-cell contact-mediated cross-talk. Here, we report on a plant-derived protein, obtained from Crataeva tapia tree Bark Lectin (CrataBL), having protease inhibitory/lectin activities, and demonstrate its effects on glioblastoma cells U87 alone and their cocultures with MSCs. CrataBL inhibited U87 cell invasion and adhesion. Using a simplified model of the stromal microenvironment, i.e., GB/MSC direct cocultures, we demonstrated that CrataBL, when added in increased concentrations, caused cell cycle arrest and decreased cocultured cells' viability and proliferation, but not invasion. The cocultured cells' phenotypes were affected by CrataBL via a variety of secreted immunomodulatory cytokines, i.e., G-CSF, GM-CSF, IL-6, IL-8, and VEGF. We hypothesize that CrataBL plays a role by boosting the modulatory effects of MSCs on these glioblastoma cell lines and thus the effects of this and other natural lectins and/or inhibitors would certainly be different in the tumor microenvironment compared to tumor cells alone. We have provided clear evidence that it makes much more sense testing these potential therapeutic adjuvants in cocultures, mimicking heterogeneous tumor-stroma interactions with cancer cells in vivo. As such, CrataBL is suggested as a new candidate to approach adjuvant treatment of this deadly tumor.


Capparaceae/chemistry , Mesenchymal Stem Cells/drug effects , Plant Bark/chemistry , Plant Extracts/pharmacology , Plant Lectins/pharmacology , Protease Inhibitors/pharmacology , Cell Adhesion/drug effects , Cell Cycle/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Coculture Techniques , Cytokines/biosynthesis , Glioblastoma/metabolism , Humans , Mesenchymal Stem Cells/metabolism , Metalloproteases/antagonists & inhibitors , Nitric Oxide/biosynthesis , Plant Extracts/chemistry , Plant Lectins/chemistry , Protease Inhibitors/chemistry
14.
Oncotarget ; 9(30): 21296-21312, 2018 Apr 20.
Article En | MEDLINE | ID: mdl-29765540

Glioblastoma is the most aggressive brain tumor with poor overall survival bellow 2 years. The natural compounds with anti-cancer properties, are thus gaining attention for possible adjuvant GBM treatment. In various cancer models Enterolobium contortisiliquum Trypsin Inhibitor (EcTI) proved to have anti-cancer effects. Here, we investigated the EcTI effects on GBM U87 cells and on mesenchymal stem cells (MSC) compared to their direct coculture (MSC/U87). MSC are present in tumor stroma, modulating GBM cells phenotype, and also represent potential drug delivery vehicle due to their tumor tropism. We showed that in p53-wild type U87 cells, metabolic activity was less affected by EcTI as in MSC monocuture, but the metabolic rate of mixed coculture was significantly reduced at lower EcTI concentration. Under coculture condition, EcTI potentiated MSC induced cell cycle arrest, possible due to highly increased p53, p21 and lower D1 expression, but there was no effect on apoptosis. Accordingly, in the coculture EcTI also enhanced Ca2+ signalling mediated via bradykinin receptor 2, being associated with nitric oxide release that highly impaired proliferation and invasion. The mechanism did not seem to involve changes in cell adhesion but rather it down-regulated the ß1 integrin signaling with associated p-FAK in U87 cells, both supporting inhibition of invasion. Finally, some cytokines were down-regulated, indicating that EcTI inhibition of signalling might be mediated by cytokines. In conclusion, these results indicate that in cocultured MSC/U87 cells EcTI impairs the metabolic activity, proliferation, and reduced invasion, possibly associated with observed cytokines secretion. In this context, we confirmed that the plant derived protein potentiated the anticancer effects, induced by MSC, as represented by GBM U87 cell line.

15.
Clin Exp Rheumatol ; 36 Suppl 111(2): 33-39, 2018.
Article En | MEDLINE | ID: mdl-29600943

OBJECTIVES: To evaluate serum cytokines as biomarkers of smoldering disease activity in patients with Takayasu's arteritis (TAK) in remission. METHODS: Thirty-four TAK patients with stable disease during the last 6 months and 22 healthy controls (HC) were included in a cross-sectional study. Serum levels of pro-inflammatory, anti-inflammatory, Th1, Th2, Th9, Th17 and Th22 cytokines were measured by the multiplex technique. RESULTS: No significant differences regarding serum cytokine levels were found between TAK patients and HC. Serum TNF-α, IL-17F, IL-21 and IL-23 were higher in patients presenting angiographic type V than in those presenting other angiographic types. Serum IL-17E, IL-17F, IL-22 and IL-23 were higher in TAK patients with previous ischaemic events compared with those without previous ischaemia. No differences in serum cytokines were observed between TAK patients with and without aneurysmal disease in the aorta or among TAK patients without therapy, those under immunosuppressive agents and patients on biological therapy. Independent associations were found regarding angiographic type V and higher serum levels of IL-4, IL-6, IL17A, IL-17E, IL-17F, IL-21, IL-22 and IL-23. Previous ischaemic events were independently associated with higher serum IL-4, IL-17E, IL-22 and IL-23. Daily prednisone dose had an inverse association with lower serum IL-4, IL6, IL-17A, IL-17E, IL-22 and IL-23. The simultaneous use of immunosuppressive and biological agents led to lower serum IL-4, IL-17E and IL-23 levels. CONCLUSIONS: A smoldering inflammatory response with predominantly cytokines involved in Th17 response seems to be ongoing in TAK patients in remission with extensive disease or with previous ischaemic events.


Asymptomatic Diseases , Cytokines/immunology , Inflammation/immunology , Takayasu Arteritis/immunology , Adult , Case-Control Studies , Cross-Sectional Studies , Female , Humans , Interleukin-17/immunology , Interleukin-23/immunology , Interleukin-4/immunology , Interleukin-6/immunology , Interleukins/immunology , Male , Middle Aged , Remission Induction , Tumor Necrosis Factor-alpha/immunology , Interleukin-22
16.
Epilepsy Behav ; 51: 300-5, 2015 Oct.
Article En | MEDLINE | ID: mdl-26318793

During the epileptogenic process, several events may occur, such as an important activation of the immune system in the central nervous system. The response to seizure activity results in an inflammation in the brain as well as in the periphery. Moreover, CRP and cytokines may be able to interact with numerous ligands in response to cardiac injury caused by sympathetic stimulation in ictal and postictal states. Based on this, we measured the serum levels of C-reactive protein (CRP) and cytokines during acute, silent, and chronic phases of rats submitted to the pilocarpine model of epilepsy. We have also analyzed the effect of a chronic treatment of these rats with omega-3 fatty acid in CRP and cytokine levels, during an epileptic focus generation. C-reactive protein and cytokines such as IL-1ß, IL-6, and TNF-α presented high concentration in the blood of rats, even well after the occurrence of SE. We found reduced levels of CRP and all proinflammatory cytokines in the blood of animals with chronic seizures, treated with omega-3, when compared with those treated with vehicle solution. Taken together, our results strongly suggest that the omega-3 is an effective treatment to prevent SUDEP occurrence due to its capability to act as an anti-inflammatory compound, reducing the systemic inflammatory parameters altered by seizures.


Biomarkers/blood , Epilepsy/blood , Epilepsy/prevention & control , Fatty Acids, Omega-3/therapeutic use , Inflammation/blood , Animals , Behavior, Animal , C-Reactive Protein/metabolism , Convulsants , Cytokines/blood , Epilepsy/chemically induced , Male , Pilocarpine , Rats , Rats, Wistar , Status Epilepticus/blood , Status Epilepticus/chemically induced
...