Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Redox Biol ; 74: 103202, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38865901

RESUMEN

Stimulator of Interferon Genes (STING) is essential for the inflammatory response to cytosolic DNA. Despite that aberrant activation of STING is linked to an increasing number of inflammatory diseases, the development of inhibitors has been challenging, with no compounds in the pipeline beyond the preclinical stage. We previously identified endogenous nitrated fatty acids as novel reversible STING inhibitors. With the aim of improving the specificity and efficacy of these compounds, we developed and tested a library of nitroalkene-based compounds for in vitro and in vivo STING inhibition. The structure-activity relationship study revealed a robustly improved electrophilicity and reduced degrees of freedom of nitroalkenes by conjugation with an aromatic moiety. The lead compounds CP-36 and CP-45, featuring a ß-nitrostyrene moiety, potently inhibited STING activity in vitro and relieved STING-dependent inflammation in vivo. This validates the potential for nitroalkene compounds as drug candidates for STING modulation to treat STING-driven inflammatory diseases, providing new robust leads for preclinical development.


Asunto(s)
Alquenos , Inflamación , Proteínas de la Membrana , Nitrocompuestos , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/metabolismo , Animales , Inflamación/tratamiento farmacológico , Humanos , Ratones , Alquenos/química , Alquenos/farmacología , Nitrocompuestos/química , Nitrocompuestos/farmacología , Relación Estructura-Actividad
2.
Food Chem ; 437(Pt 1): 137767, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-37879157

RESUMEN

Nitrated fatty acids are important anti-inflammatory and protective lipids formed in the gastric compartment, with conjugated linoleic acid (rumenic acid, RA, 9Z,11E-18:2) being the primary substrate for lipid nitration. The recently reported identification of nitrated rumelenic acid (NO2-RLA) in human urine has led to hypothesize that rumelenic acid (RLA, 9Z,11E,15Z-18:3) from dairy fat is responsible for the formation of NO2-RLA. To evaluate the source and mechanism of NO2-RLA formation, 15N labeled standards of NO2-RLA were synthesized and characterized. Afterward, milk fat with different RA and RLA levels was administered to mice in the presence of nitrite, and the appearance of nitrated fatty acids in plasma and urine followed. We confirmed the formation of NO2-RLA and defined the main metabolites in plasma, urine, and tissues. In conclusion, RLA obtained from dairy products is the main substrate for forming this novel electrophilic lipid reported to be present in human urine.


Asunto(s)
Ácidos Linoleicos Conjugados , Nitratos , Ratones , Humanos , Animales , Nitratos/química , Nitritos/metabolismo , Dióxido de Nitrógeno , Ácidos Grasos/química , Productos Lácteos , Ácidos Linolénicos
3.
bioRxiv ; 2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37645906

RESUMEN

Nitro fatty acids (NO 2 -FAs) are endogenously generated lipid signaling mediators from metabolic and inflammatory reactions between conjugated diene fatty acids and nitric oxide or nitrite-derived reactive species. NO 2 -FAs undergo reversible Michael addition with hyperreactive protein cysteine thiolates to induce posttranslational protein modifications that can impact protein function. Herein, we report a novel mechanism of action of natural and non-natural nitroalkenes structurally similar to ( E ) 10-nitro-octadec-9-enoic acid (CP-6), recently de-risked by preclinical Investigational New Drug-enabling studies and Phase 1 and Phase 2 clinical trials and found to induce DNA damage in a TNBC xenograft by inhibiting homologous-recombination (HR)-mediated repair of DNA double-strand breaks (DSB). CP-6 specifically targets Cys319, essential in RAD51-controlled HR-mediated DNA DSB repair in cells. A nitroalkene library screen identified two structurally different nitroalkenes, a non-natural fatty acid [( E ) 8-nitro- nonadec-7-enoic acid (CP-8)] and a dicarboxylate ester [dimethyl ( E )nitro-oct-4-enedioate (CP- 23)] superior to CP-6 in TNBC cells killing, synergism with three different inhibitors of the poly ADP-ribose polymerase (PARP) and γ-IR. CP-8 and CP-23 effectively inhibited γ-IR-induced RAD51 foci formation and HR in a GFP-reported assay but did not affect benign human epithelial cells or cell cycle phases. In vivo, CP-8 and CP-23's efficacies diverged as only CP-8 showed promising anticancer activities alone and combined with the PARP inhibitor talazoparib in an HR-proficient TNBC mouse model. As preliminary preclinical toxicology analysis also suggests CP-8 as safe, our data endorse CP-8 as a novel anticancer molecule for treating cancers sensitive to homologous recombination-mediated DNA repair inhibitors.

4.
Redox Biol ; 66: 102856, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37633047

RESUMEN

Nitro fatty acids (NO2-FAs) are endogenously generated lipid signaling mediators from metabolic and inflammatory reactions between conjugated diene fatty acids and nitric oxide or nitrite-derived reactive species. NO2-FAs undergo reversible Michael addition with hyperreactive protein cysteine thiolates to induce posttranslational protein modifications that can impact protein function. Herein, we report a novel mechanism of action of natural and non-natural nitroalkenes structurally similar to (E) 10-nitro-octadec-9-enoic acid (CP-6), recently de-risked by preclinical Investigational New Drug-enabling studies and Phase 1 and Phase 2 clinical trials and found to induce DNA damage in a TNBC xenograft by inhibiting homologous-recombination (HR)-mediated repair of DNA double-strand breaks (DSB). CP-6 specifically targets Cys319, essential in RAD51-controlled HR-mediated DNA DSB repair in cells. A nitroalkene library screen identified two structurally different nitroalkenes, a non-natural fatty acid [(E) 8-nitro-nonadec-7-enoic acid (CP-8)] and a dicarboxylate ester [dimethyl (E)nitro-oct-4-enedioate (CP-23)] superior to CP-6 in TNBC cells killing, synergism with three different inhibitors of the poly ADP-ribose polymerase (PARP) and γ-IR. CP-8 and CP-23 effectively inhibited γ-IR-induced RAD51 foci formation and HR in a GFP-reported assay but did not affect benign human epithelial cells or cell cycle phases. In vivo, CP-8 and CP-23's efficacies diverged as only CP-8 showed promising anticancer activities alone and combined with the PARP inhibitor talazoparib in an HR-proficient TNBC mouse model. As preliminary preclinical toxicology analysis also suggests CP-8 as safe, our data endorse CP-8 as a novel anticancer molecule for treating cancers sensitive to homologous recombination-mediated DNA repair inhibitors.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Animales , Ratones , Humanos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Dióxido de Nitrógeno , Recombinación Homóloga , Apoptosis , Alquenos , ADN , Recombinasa Rad51
5.
Science ; 379(6636): 996-1003, 2023 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-36893255

RESUMEN

Metabolic networks are interconnected and influence diverse cellular processes. The protein-metabolite interactions that mediate these networks are frequently low affinity and challenging to systematically discover. We developed mass spectrometry integrated with equilibrium dialysis for the discovery of allostery systematically (MIDAS) to identify such interactions. Analysis of 33 enzymes from human carbohydrate metabolism identified 830 protein-metabolite interactions, including known regulators, substrates, and products as well as previously unreported interactions. We functionally validated a subset of interactions, including the isoform-specific inhibition of lactate dehydrogenase by long-chain acyl-coenzyme A. Cell treatment with fatty acids caused a loss of pyruvate-lactate interconversion dependent on lactate dehydrogenase isoform expression. These protein-metabolite interactions may contribute to the dynamic, tissue-specific metabolic flexibility that enables growth and survival in an ever-changing nutrient environment.


Asunto(s)
Metabolismo de los Hidratos de Carbono , L-Lactato Deshidrogenasa , Metaboloma , Humanos , Ácidos Grasos/metabolismo , L-Lactato Deshidrogenasa/metabolismo , Especificidad de Órganos , Espectrometría de Masas/métodos , Regulación Alostérica
6.
JCI Insight ; 8(5)2023 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-36749633

RESUMEN

Type II alveolar epithelial cell (AECII) redox imbalance contributes to the pathogenesis of idiopathic pulmonary fibrosis (IPF), a deadly disease with limited treatment options. Here, we show that expression of membrane-bound cytochrome B5 reductase 3 (CYB5R3), an enzyme critical for maintaining cellular redox homeostasis and soluble guanylate cyclase (sGC) heme iron redox state, is diminished in IPF AECIIs. Deficiency of CYB5R3 in AECIIs led to sustained activation of the pro-fibrotic factor TGF-ß1 and increased susceptibility to lung fibrosis. We further show that CYB5R3 is a critical regulator of ERK1/2 phosphorylation and the sGC/cGMP/protein kinase G axis that modulates activation of the TGF-ß1 signaling pathway. We demonstrate that sGC agonists (BAY 41-8543 and BAY 54-6544) are effective in reducing the pulmonary fibrotic outcomes of in vivo deficiency of CYB5R3 in AECIIs. Taken together, these results show that CYB5R3 in AECIIs is required to maintain resilience after lung injury and fibrosis and that therapeutic manipulation of the sGC redox state could provide a basis for treating fibrotic conditions in the lung and beyond.


Asunto(s)
Células Epiteliales Alveolares , Fibrosis Pulmonar Idiopática , Humanos , Células Epiteliales Alveolares/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Fibrosis Pulmonar Idiopática/metabolismo , Transducción de Señal , Citocromo-B(5) Reductasa/metabolismo
7.
Adv Redox Res ; 62022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36561324

RESUMEN

Recent reports have clearly demonstrated a tight correlation between obesity and elevated circulating uric acid levels (hyperuricemia). However, nearly all preclinical work in this area has been completed with male mice, leaving the field with a considerable gap in knowledge regarding female responses to obesity and hyperuricemia. This deficiency in sex as a biological variable extends beyond unknowns regarding uric acid (UA) to several important comorbidities associated with obesity including nonalcoholic fatty liver disease (NAFLD). To attempt to address this issue, herein we describe both phenotypic and metabolic responses to diet-induced obesity (DIO) in female mice. Six-week-old female C57BL/6J mice were fed a high-fat diet (60% calories derived from fat) for 32 weeks. The DIO female mice had significant weight gain over the course of the study, higher fasting blood glucose, impaired glucose tolerance, and elevated plasma insulin levels compared to age-matched on normal chow. While these classic indices of DIO and NAFLD were observed such as increased circulating levels of ALT and AST, there was no difference in circulating UA levels. Obese female mice also demonstrated increased hepatic triglyceride (TG), cholesterol, and cholesteryl ester. In addition, several markers of hepatic inflammation were significantly increased. Also, alterations in the expression of redox-related enzymes were observed in obese mice compared to lean controls including increases in extracellular superoxide dismutase (Sod3), heme oxygenase (Ho)-1, and xanthine dehydrogenase (Xdh). Interestingly, hepatic UA levels were significantly elevated (~2-fold) in obese mice compared to their lean counterparts. These data demonstrate female mice assume a similar metabolic profile to that reported in several male models of obesity in the context of alterations in glucose tolerance, hepatic steatosis, and elevated transaminases (ALT and AST) in the absence of hyperuricemia affirming the need for further study.

8.
Sci Adv ; 8(26): eabm9138, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35767602

RESUMEN

The up-regulation of kynurenine metabolism induces immunomodulatory responses via incompletely understood mechanisms. We report that increases in cellular and systemic kynurenine levels yield the electrophilic derivative kynurenine-carboxyketoalkene (Kyn-CKA), as evidenced by the accumulation of thiol conjugates and saturated metabolites. Kyn-CKA induces NFE2 like bZIP transcription factor 2- and aryl hydrocarbon receptor-regulated genes and inhibits nuclear factor κB- and NLR family pyrin domain containing 3-dependent proinflammatory signaling. Sickle cell disease (SCD) is a hereditary hemolytic condition characterized by basal inflammation and recurrent vaso-occlusive crises. Both transgenic SCD mice and patients with SCD exhibit increased kynurenine and Kyn-CKA metabolite levels. Plasma hemin and kynurenine concentrations are positively correlated, indicating that Kyn-CKA synthesis in SCD is up-regulated during pathogenic vascular stress. Administration of Kyn-CKA abrogated pulmonary microvasculature occlusion in SCD mice, an important factor in lung injury development. These findings demonstrate that the up-regulation of kynurenine synthesis and its metabolism to Kyn-CKA is an adaptive response that attenuates inflammation and protects tissues.

9.
Free Radic Biol Med ; 162: 327-337, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33131723

RESUMEN

Nitrated fatty acids (NO2-FA) are an endogenous class of signaling mediators formed mainly during digestion and inflammation. The signaling actions of NO2-FA have been extensively studied, but their detection and characterization lagged. Several different nitrated fatty acid species have been reported in animals and humans, but their formation remains controversial, and a systemic approach to define the endogenous pool of NO2-FA is needed. Herein, we screened for endogenous NO2-FA in urine from healthy human volunteers as this is the main excretion route for NO2-FA and its metabolites, and it provides an excellent matrix for evaluation. Only isomers of two fatty acids, conjugated linoleic and linolenic acid were found to be nitrated. Several, previously unknown, nitrated species were identified and confirmed using high-resolution mass spectrometry, fragmentation analysis, and compared to synthetic nitrated standards, the main group corresponding to nitrated conjugated linolenic acid (NO2-CLnA). In contrast, we were unable to confirm the presence of previously reported nitrated omega-3's, oleic acid, arachidonic acid and α- and γ-linolenic acid, suggesting that their biological formation and presence in humans should be re-evaluated. Metabolite analysis of NO2-CLnA in human urine identified cysteine adducts and ß-oxidation products, which were compared to the metabolic products of nitrated standards obtained using primary mouse hepatocytes. Importantly, NO2-CLnA isomers belong to two defined groups, are electrophilic, participate in Michael addition reactions and account for 39% of total urinary NO2-FA, highlighting their relative abundance and possible role in cell signaling.


Asunto(s)
Ácidos Grasos , Nitratos , Animales , Humanos , Espectrometría de Masas , Oxidación-Reducción , Transducción de Señal
10.
Front Plant Sci ; 11: 1059, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32793255

RESUMEN

Nitric oxide (NO) is a second messenger that regulates a broad range of physiological processes in plants. NO-derived molecules called reactive nitrogen species (RNS) can react with unsaturated fatty acids generating nitrated fatty acids (NO2-FA). NO2-FA work as signaling molecules in mammals where production and targets have been described under different stress conditions. Recently, NO2-FAs were detected in plants, however their role(s) on plant physiological processes is still poorly known. Although in this work NO2-OA has not been detected in any Arabidopsis seedling tissue, here we show that exogenous application of nitro-oleic acid (NO2-OA) inhibits Arabidopsis primary root growth; this inhibition is not likely due to nitric oxide (NO) production or impaired auxin or cytokinin root responses. Deep analyses showed that roots incubated with NO2-OA had a lower cell number in the division area. Although this NO2-FA did not affect the hormonal signaling mechanisms maintaining the stem cell niche, plants incubated with NO2-OA showed a reduction of cell division in the meristematic area. Therefore, this work shows that the exogenous application of NO2-OA inhibits mitotic processes subsequently reducing primary root growth.

11.
Redox Biol ; 36: 101591, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32531545

RESUMEN

Macrophages play a pivotal role in the early stages of atherosclerosis development; they excessively accumulate cholesterol in the cytosol in response to modified Low Density Lipoprotein (mLDL). The mLDL are incorporated through scavenger receptors. CD36 is a high-affinity cell surface scavenger receptor that facilitates the binding and uptake of long-chain fatty acids and mLDL into the cell. Numerous structurally diverse ligands can initiate signaling responses through CD36 to regulate cell metabolism, migration, and angiogenesis. Nitro-fatty acids are endogenous electrophilic lipid mediators that react with and modulate the function of multiple enzymes and transcriptional regulatory proteins. These actions induce the expression of several anti-inflammatory and cytoprotective genes and limit pathologic responses in experimental models of atherosclerosis, cardiac ischemia/reperfusion, and inflammatory diseases. Pharmacological and genetic approaches were used to explore the actions of nitro-oleic acid (NO2-OA) on macrophage lipid metabolism. Pure synthetic NO2-OA dose-dependently increased CD36 expression in RAW264.7 macrophages and this up-regulation was abrogated in BMDM from Nrf2-KO mice. Ligand binding analysis revealed that NO2-OA specifically interacts with CD36, thus limiting the binding and uptake of mLDL. Docking analysis shows that NO2-OA establishes a low binding energy interaction with the alpha helix containing Lys164 in CD36. NO2-OA also restored autophagy flux in mLDL-loaded macrophages, thus reversing cholesterol deposition within the cell. In aggregate, these results indicate that NO2-OA reduces cholesterol uptake by binding to CD36 and increases cholesterol efflux by restoring autophagy.


Asunto(s)
Antígenos CD36 , Ácido Oléico , Animales , Antígenos CD36/genética , Colesterol , Células Espumosas/metabolismo , Ligandos , Lipoproteínas LDL/metabolismo , Macrófagos/metabolismo , Ratones
12.
J Plant Physiol ; 246-247: 153128, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32065921

RESUMEN

Nitrated fatty acids (NO2-FAs) are important signaling molecules in mammals. NO2-FAs are formed by the addition reaction of nitric oxide- and nitrite-derived nitrogen dioxide with unsaturated fatty acid double bonds. The study of NO2-FAs in plant systems constitutes an interesting and emerging area. The presence of NO2-FA has been reported in olives, peas, rice and Arabidopsis. To gain a better understanding of the role of NO2-FA on plant physiology, we analyzed the effects of exogenous application of nitro-oleic acid (NO2-OA). In tomato cell suspensions we found that NO2-OA induced reactive oxygen species (ROS) production in a dose-dependent manner via activation of NADPH oxidases, a mechanism that requires calcium entry from the extracellular compartment and protein kinase activation. In tomato and Arabidopsis leaves, NO2-OA treatments induced two waves of ROS production, resembling plant defense responses. Arabidopsis NADPH oxidase mutants showed that NADPH isoform D (RBOHD) was required for NO2-OA-induced ROS production. In addition, on Arabidopsis isolated epidermis, NO2-OA induced stomatal closure via RBOHD and F. Altogether, these results indicate that NO2-OA triggers NADPH oxidase activation revealing a new signaling role in plants.


Asunto(s)
Arabidopsis/metabolismo , NADPH Oxidasas/metabolismo , Ácido Oléico/farmacología , Proteínas de Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Solanum lycopersicum/metabolismo , Arabidopsis/efectos de los fármacos , Proteínas de Arabidopsis/metabolismo , Células Cultivadas , Solanum lycopersicum/efectos de los fármacos , Inmunidad de la Planta/efectos de los fármacos , Inmunidad de la Planta/inmunología , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Estomas de Plantas/efectos de los fármacos , Estomas de Plantas/fisiología
13.
JCI Insight ; 5(1)2020 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-31941842

RESUMEN

Lithium (Li) is the mainstay pharmacotherapeutic mood stabilizer in bipolar disorder. Its efficacious use is complicated by acute and chronic renal side effects, including nephrogenic diabetes insipidus (NDI) and progression to chronic kidney disease (CKD). The nuclear factor erythroid-derived 2-related factor 2 (Nrf2) pathway senses and coordinates cellular responses to oxidative and electrophilic stress. Here, we identify that graded genetic activation of Nrf2 protects against Li-induced NDI (Li-NDI) and volume wasting via an aquaporin 2-independent mechanism. Renal Nrf2 activity is differentially expressed on functional segments of the nephron, and its activation along the distal tubule and collecting duct directly modulates ion transporter expression, mimicking paradoxical effects of diuretics in mitigating Li-NDI. In addition, Nrf2 reduces cyclooxygenase expression and vasoactive prostaglandin biosynthesis. Pharmacologic activation of Nrf2 confers protective effects, confirming this pathway as a potentially novel druggable target for the prevention of acute and chronic renal sequelae of Li therapy.


Asunto(s)
Diabetes Insípida Nefrogénica/tratamiento farmacológico , Litio/efectos adversos , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/farmacología , Animales , Acuaporina 2/metabolismo , Trastorno Bipolar , Ciclooxigenasa 1/metabolismo , Diabetes Insípida Nefrogénica/inducido químicamente , Células Epiteliales , Humanos , Riñón/metabolismo , Masculino , Proteínas de la Membrana , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factor 2 Relacionado con NF-E2/genética , Prostaglandina-Endoperóxido Sintasas/metabolismo
14.
Redox Biol ; 21: 101050, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30654300

RESUMEN

Cells evolved robust homeostatic mechanisms to protect against oxidation or alkylation by electrophilic species. Glutathione (GSH) is the most abundant intracellular thiol, protects cellular components from oxidation and is maintained in a reduced state by glutathione reductase (GR). Nitro oleic acid (NO2-OA) is an electrophilic fatty acid formed under digestive and inflammatory conditions that both reacts with GSH and induces its synthesis upon activation of Nrf2 signaling. The effects of NO2-OA on intracellular GSH homeostasis were evaluated. In addition to upregulation of GSH biosynthesis, we observed that NO2-OA increased intracellular GSSG in an oxidative stress-independent manner. NO2-OA directly inhibited GR in vitro by covalent modification of the catalytic Cys61, with kon of (3.45 ± 0.04) × 103 M-1 s-1, koff of (4.4 ± 0.4) × 10-4 s-1, and Keq of (1.3 ± 0.1) × 10-7 M. Akin to NO2-OA, the electrophilic Nrf2 activators bardoxolone-imidazole (CDDO-Im), bardoxolone-methyl (CDDO-Me) and dimethyl fumarate (DMF) also upregulated GSH biosynthesis while promoting GSSG accumulation, but without directly inhibiting GR activity. In vitro assays in which GR was treated with increasing GSH concentrations and GSH depletion experiments in cells revealed that GR activity is finely regulated via product inhibition, an observation further supported by theoretical (kinetic modeling of cellular GSSG:GSH levels) approaches. Together, these results describe two independent mechanisms by which electrophiles modulate the GSH/GSSG couple, and provide a novel conceptual framework to interpret experimentally determined values of GSH and GSSG.


Asunto(s)
Glutatión Reductasa/química , Glutatión Reductasa/metabolismo , Glutatión/biosíntesis , Algoritmos , Alquilación , Secuencia de Aminoácidos , Animales , Catálisis , Dominio Catalítico , Disulfuro de Glutatión/metabolismo , Espacio Intracelular , Cinética , Ratones , Modelos Teóricos , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/antagonistas & inhibidores , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Óxido Nítrico/metabolismo , Oxidación-Reducción , Estrés Oxidativo , Células RAW 264.7 , Especies Reactivas de Oxígeno , Compuestos de Sulfhidrilo
15.
Mol Nutr Food Res ; 63(3): e1801029, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30408325

RESUMEN

SCOPE: Cruciferous vegetable consumption is associated with favorable health outcomes. Bioactive compounds arising in these, especially isothiocyanates, exert effects that contribute to prevention of disease, in large part through the attenuation of inflammation and oxidative stress. However, much about isothiocyanate metabolites and their role as biomarkers of crucifer intake remain unknown. METHODS AND RESULTS: The utility and limitations of 2-thiothiazolidine-4-carboxylic acid (TTCA) as a urinary biomarker of broccoli beverage intake are tested in a randomized crossover clinical trial where 50 participants consumed either a glucoraphanin-rich (GRR) or sulforaphane-rich (SFR) beverage. Compared to run-in and wash-out periods, significantly higher urinary TTCA is observed after broccoli beverage consumption. Measurements also show that TTCA is present in beverage powders and in all tested cruciferous vegetables. GRR results in excretion of ≈87% of the ingested TTCA while SFR results in excretion of ≈176%. Elevated urinary TTCA is observed in rats administered 100 µmol kg-1 SFN. Unlike SFN, TTCA does not activate Nrf2-mediated cytoprotective signaling. CONCLUSION: Collectively, TTCA appears to be a common isothiocyanate-derived metabolite that has the capacity to be utilized as a biomarker of cruciferous vegetables that would be beneficial for objective and quantitative tracking of intake in studies.


Asunto(s)
Brassica , Isotiocianatos/metabolismo , Tiazolidinas/orina , Animales , Biomarcadores , Células Cultivadas , Estudios Cruzados , Femenino , Humanos , Ratas , Sulfóxidos , Verduras
16.
J Lipid Res ; 60(2): 388-399, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30545956

RESUMEN

Electrophilic nitro-fatty acids [NO2-FAs (fatty acid nitroalkenes)] showed beneficial signaling actions in preclinical studies and safety in phase 1 clinical trials. A detailed description of the pharmacokinetics (PK) of NO2-FAs is complicated by the capability of electrophilic fatty acids to alkylate thiols reversibly and become esterified in various complex lipids, and the instability of the nitroalkene moiety during enzymatic and base hydrolysis. Herein, we report the mechanism and kinetics of absorption, metabolism, and distribution of the endogenously detectable and prototypical NO2-FA, 10-nitro-oleic acid (10-NO2-OA), in dogs after oral administration. Supported by HPLC-high-resolution-MS/MS analysis of synthetic and plasma-derived 10-NO2-OA-containing triacylglycerides (TAGs), we show that a key mechanism of NO2-FA distribution is an initial esterification into complex lipids. Quantitative analysis of plasma free and esterified lipid fractions confirmed time-dependent preferential incorporation of 10-NO2-OA into TAGs when compared with its principal metabolite, 10-nitro-stearic acid. Finally, new isomers of 10-NO2-OA were identified in vivo, and their electrophilic reactivity and metabolism characterized. Overall, we reveal that NO2-FAs display unique PK, with the principal mechanism of tissue distribution involving complex lipid esterification, which serves to shield the electrophilic character of this mediator from plasma and hepatic inactivation and thus permits efficient distribution to target organs.


Asunto(s)
Alquenos/química , Ácidos Grasos/química , Ácidos Grasos/metabolismo , Metabolismo de los Lípidos , Nitrocompuestos/química , Animales , Transporte Biológico , Perros , Transporte de Electrón , Esterificación , Ácidos Grasos/sangre , Ácidos Grasos/farmacocinética , Concentración de Iones de Hidrógeno , Isomerismo , Masculino , Distribución Tisular
17.
Proc Natl Acad Sci U S A ; 115(33): E7768-E7775, 2018 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-30061387

RESUMEN

The adaptor molecule stimulator of IFN genes (STING) is central to production of type I IFNs in response to infection with DNA viruses and to presence of host DNA in the cytosol. Excessive release of type I IFNs through STING-dependent mechanisms has emerged as a central driver of several interferonopathies, including systemic lupus erythematosus (SLE), Aicardi-Goutières syndrome (AGS), and stimulator of IFN genes-associated vasculopathy with onset in infancy (SAVI). The involvement of STING in these diseases points to an unmet need for the development of agents that inhibit STING signaling. Here, we report that endogenously formed nitro-fatty acids can covalently modify STING by nitro-alkylation. These nitro-alkylations inhibit STING palmitoylation, STING signaling, and subsequently, the release of type I IFN in both human and murine cells. Furthermore, treatment with nitro-fatty acids was sufficient to inhibit production of type I IFN in fibroblasts derived from SAVI patients with a gain-of-function mutation in STING. In conclusion, we have identified nitro-fatty acids as endogenously formed inhibitors of STING signaling and propose for these lipids to be considered in the treatment of STING-dependent inflammatory diseases.


Asunto(s)
Ácidos Grasos/metabolismo , Herpes Simple/metabolismo , Herpesvirus Humano 2/metabolismo , Proteínas de la Membrana/metabolismo , Transducción de Señal , Animales , Enfermedades Autoinmunes del Sistema Nervioso/genética , Enfermedades Autoinmunes del Sistema Nervioso/metabolismo , Enfermedades Autoinmunes del Sistema Nervioso/patología , Herpes Simple/genética , Herpes Simple/patología , Humanos , Interferón Tipo I/genética , Interferón Tipo I/metabolismo , Lipoilación , Lupus Eritematoso Sistémico/genética , Lupus Eritematoso Sistémico/metabolismo , Lupus Eritematoso Sistémico/patología , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Malformaciones del Sistema Nervioso/genética , Malformaciones del Sistema Nervioso/metabolismo , Malformaciones del Sistema Nervioso/patología , Células RAW 264.7
18.
Nitric Oxide ; 79: 38-44, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-30006146

RESUMEN

Nitro-fatty acids (NO2-FA) are pleiotropic modulators of redox signaling pathways. Their effects on inflammatory signaling have been studied in great detail in cell, animal and clinical models primarily using exogenously administered nitro-oleic acid. While we know a considerable amount regarding NO2-FA signaling, endogenous formation and metabolism is relatively unexplored. This review will cover what is currently known regarding the proposed mechanisms of NO2-FA formation, dietary modulation of endogenous NO2-FA levels, pathways of NO2-FA metabolism and the detection of NO2-FA and corresponding metabolites.


Asunto(s)
Ácidos Grasos/biosíntesis , Ácidos Grasos/metabolismo , Nitrocompuestos/metabolismo , Animales , Humanos , Óxido Nítrico/metabolismo , Oxidación-Reducción
19.
Redox Biol ; 15: 522-531, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29413964

RESUMEN

Conjugated linoleic acid (CLA) is a prime substrate for intra-gastric nitration giving rise to the formation of nitro-conjugated linoleic acid (NO2-CLA). Herein, NO2-CLA generation is demonstrated within the context of acute inflammatory responses both in vitro and in vivo. Macrophage activation resulted in dose- and time-dependent CLA nitration and also in the production of secondary electrophilic and non-electrophilic derivatives. Both exogenous NO2-CLA as well as that generated in situ, attenuated NF-κB-dependent gene expression, decreased pro-inflammatory cytokine production and up-regulated Nrf2-regulated proteins. Importantly, both CLA nitration and the corresponding downstream anti-inflammatory actions of NO2-CLA were recapitulated in a mouse peritonitis model where NO2-CLA administration decreased pro-inflammatory cytokines and inhibited leukocyte recruitment. Taken together, our results demonstrate that the formation of NO2-CLA has the potential to function as an adaptive response capable of not only modulating inflammation amplitude but also protecting neighboring tissues via the expression of Nrf2-dependent genes.


Asunto(s)
Inmunoconjugados/metabolismo , Inflamación/metabolismo , Ácidos Linoleicos Conjugados/metabolismo , Óxido Nítrico/metabolismo , Animales , Modelos Animales de Enfermedad , Humanos , Inmunoconjugados/inmunología , Inflamación/inducido químicamente , Inflamación/inmunología , Inflamación/patología , Ácidos Linoleicos Conjugados/inmunología , Ácidos Linoleicos Conjugados/farmacología , Ratones , FN-kappa B/metabolismo , Óxido Nítrico/química , Óxido Nítrico/inmunología , Transducción de Señal
20.
Sci Rep ; 8(1): 2295, 2018 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-29396403

RESUMEN

Fatty acid nitroalkene derivatives (NO2-FA) activate Nrf2-regulated antioxidant gene expression and inhibit NF-κB-dependent cytokine expression. To better define NO2-FA structure-function relationships, a series of 22 new chemical entities (NCEs) containing an electrophilic nitroalkene functional group were synthesized and screened for both Nrf2- and NF-κB activities using luciferase-based assays. The structural variables were acyl chain length (11 to 24 carbons) and position of the electrophilic nitroalkene group. In luciferase-based reporter assays, Nrf2 was maximally activated by omega-12 nitroalkene fatty acids while TNFα stimulated NF-κB-inhibition was maximal for omega-5 nitroalkenes. The top pathway-modulating NO2-FAs were a) evaluated for an ability to activate Nrf2-dependent signaling and inhibit NF-κB-dependent inflammatory responses of RAW264.7 cells and b) compared to electrophilic compounds in clinical development. These findings revealed that 8/9-nitro-eicos-8-enoic acid (NCE-10) was collectively the most effective NCE and that both the α and ω acyl chain lengths influence nitroalkene activation of Nrf2 and inhibition of NF-κB signaling. This insight will guide development of more effective non-natural homologs of endogenously-detectable fatty acid nitroalkenes as anti-inflammatory and anti-fibrotic drug candidates.


Asunto(s)
Alquenos/metabolismo , Ácidos Grasos/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , FN-kappa B/metabolismo , Nitrocompuestos/metabolismo , Transducción de Señal/efectos de los fármacos , Alquenos/síntesis química , Alquenos/química , Animales , Fenómenos Químicos , Ácidos Grasos/síntesis química , Ácidos Grasos/química , Genes Reporteros , Luciferasas/análisis , Luciferasas/genética , Macrófagos/efectos de los fármacos , Ratones , Estructura Molecular , Nitrocompuestos/síntesis química , Nitrocompuestos/química , Células RAW 264.7
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...