Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 34
1.
Transplantation ; 108(4): 911-922, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38291584

BACKGROUND: Delineation of T-cell genes, gene sets, pathways, and T-cell subtypes associated with acute T cell-mediated rejection (TCMR) may improve its management. METHODS: We performed bulk RNA-sequencing of 34 kidney allograft biopsies (16 Banff TCMR and 18 no rejection [NR] biopsies) from 34 adult recipients of human kidneys. Computational analysis was performed to determine the differential intragraft expression of T-cell genes at the level of single-gene, gene set, and pathways. RESULTS: T-cell signaling pathway gene sets for plenary T-cell activation were overrepresented in TCMR biopsies compared with NR biopsies. Heightened expression of T-cell signaling genes was validated using external TCMR biopsies. Pro- and anti-inflammatory immune gene sets were enriched, and metabolism gene sets were depleted in TCMR biopsies compared with NR biopsies. Gene signatures of regulatory T cells, Th1 cells, Th2 cells, Th17 cells, T follicular helper cells, CD4 tissue-resident memory T cells, and CD8 tissue-resident memory T cells were enriched in TCMR biopsies compared with NR biopsies. T-cell exhaustion and anergy were also molecular attributes of TCMR. Gene sets associated with antigen processing and presentation, and leukocyte transendothelial migration were overexpressed in TCMR biopsies compared with NR biopsies. Cellular deconvolution of graft infiltrating cells by gene expression patterns identified CD8 T cell to be the most abundant T-cell subtype infiltrating the allograft during TCMR. CONCLUSIONS: Our delineation of intragraft T-cell gene expression patterns, in addition to yielding new biological insights, may help prioritize T-cell genes and T-cell subtypes for therapeutic targeting.


Kidney Transplantation , Adult , Humans , Kidney Transplantation/adverse effects , Kidney/pathology , Transplantation, Homologous , Allografts/pathology , RNA , Graft Rejection , Biopsy
2.
Kidney Int ; 105(2): 347-363, 2024 Feb.
Article En | MEDLINE | ID: mdl-38040290

Natural killer (NK) cells mediate spontaneous cell-mediated cytotoxicity and antibody-dependent cell-mediated cytotoxicity. This dual functionality could enable their participation in chronic active antibody-mediated rejection (CA-ABMR). Earlier microarray profiling studies have not subcategorized antibody-mediated rejection into CA-ABMR and active-ABMR, and the gene expression pattern of CA-ABMR has not been compared with that of T cell-mediated rejection (TCMR). To fill these gaps, we RNA sequenced human kidney allograft biopsies categorized as CA-ABMR, active-ABMR, TCMR, or No Rejection (NR). Among the 15,910 genes identified in the biopsies, 60, 114, and 231 genes were uniquely overexpressed in CA-ABMR, TCMR, and active-ABMR, respectively; compared to NR, 50 genes were shared between CA-ABMR and active-ABMR, and 164 genes between CA-ABMR and TCMR. The overexpressed genes were annotated to NK cells and T cells in CA-ABMR and TCMR, and to neutrophils and monocytes in active-ABMR. The NK cell cytotoxicity and allograft rejection pathways were enriched in CA-ABMR. Genes encoding perforin, granzymes, and death receptor were overexpressed in CA-ABMR versus active-ABMR but not compared to TCMR. NK cell cytotoxicity pathway gene set variation analysis score was higher in CA-ABMR compared to active-ABMR but not in TCMR. Principal component analysis of the deconvolved immune cellular transcriptomes separated CA-ABMR and TCMR from active-ABMR and NR. Immunohistochemistry of kidney allograft biopsies validated a higher proportion of CD56+ NK cells in CA-ABMR than in active-ABMR. Thus, CA-ABMR was exemplified by the overexpression of the NK cell cytotoxicity pathway gene set and, surprisingly, molecularly more like TCMR than active-ABMR.


Kidney Transplantation , Humans , Kidney Transplantation/adverse effects , Transcriptome , Graft Rejection , Kidney/pathology , Antibodies , Gene Expression Profiling , Allografts , Sequence Analysis, RNA
3.
bioRxiv ; 2023 Aug 27.
Article En | MEDLINE | ID: mdl-37662387

All mammalian organs depend upon resident macrophage populations to coordinate repair processes and facilitate tissue-specific functions1-3. Recent work has established that functionally distinct macrophage populations reside in discrete tissue niches and are replenished through some combination of local proliferation and monocyte recruitment4,5. Moreover, decline in macrophage abundance and function in tissues has been shown to contribute to many age-associated pathologies, such as atherosclerosis, cancer, and neurodegeneration6-8. Despite these advances, the cellular mechanisms that coordinate macrophage organization and replenishment within an aging tissue niche remain largely unknown. Here we show that capillary-associated macrophages (CAMs) are selectively lost over time, which contributes to impaired vascular repair and tissue perfusion in older mice. To investigate resident macrophage behavior in vivo, we have employed intravital two-photon microscopy to non-invasively image in live mice the skin capillary plexus, a spatially well-defined model of niche aging that undergoes rarefication and functional decline with age. We find that CAMs are lost with age at a rate that outpaces that of capillary loss, leading to the progressive accumulation of capillary niches without an associated macrophage in both mice and humans. Phagocytic activity of CAMs was locally required to repair obstructed capillary blood flow, leaving macrophage-less niches selectively vulnerable to both homeostatic and injury-induced loss in blood flow. Our work demonstrates that homeostatic renewal of resident macrophages is not as finely tuned as has been previously suggested9-11. Specifically, we found that neighboring macrophages do not proliferate or reorganize sufficiently to maintain an optimal population across the skin capillary niche in the absence of additional cues from acute tissue damage or increased abundance of growth factors, such as colony stimulating factor 1 (CSF1). Such limitations in homeostatic renewal and organization of various niche-resident cell types are potentially early contributors to tissue aging, which may provide novel opportunities for future therapeutic interventions.

4.
J Thromb Haemost ; 21(10): 2908-2912, 2023 10.
Article En | MEDLINE | ID: mdl-37517478

BACKGROUND: We previously determined good agreement and high specificity of the International Society on Thrombosis and Haemostasis (ISTH) definition of pulmonary embolism (PE)-related death among an expert central adjudication committee (CAC). CACs are often composed of experts in the corresponding research field. Involving physician trainees in CACs would allow investigators to divide the workload and foster trainees' research experience. OBJECTIVE: To evaluate the accuracy of the ISTH definition of PE-related death for PE- versus non-PE-related deaths as confirmed by autopsy and its interrater agreement among physician trainees. METHODS: This retrospective autopsy cohort included all patients with PE-related deaths between January 2010 and July 2019 as well as patients who died in 2018 from a cause other than PE at the New York-Presbyterian Hospital. Based on premortem clinical summaries, two physician trainees independently determined the cause of death using the ISTH definition of PE-related death. We calculated the sensitivity and specificity of the ISTH definition to identify autopsy-confirmed PE-related death and its interrater agreement. RESULTS: Overall, 126 death events were adjudicated (median age, 68 years; 60 [48%] women), of which 29 (23%) were due to PE, as confirmed by autopsy. Sensitivity and specificity of the ISTH definition for autopsy-confirmed PE-related death was 48% (95% CI, 29-67) and 100% (95% CI, 96-100), respectively. Interrater reliability for PE-related death was good (percentage agreement, 93%; 95% CI, 87-96, Cohen's Kappa, 0.67; 95% CI, 44-85). CONCLUSION: Our findings are consistent with our previous validation study. They further support the use of the ISTH definition of PE-related death and revealed high agreement between adjudicators with varied experience.


Pulmonary Embolism , Thrombosis , Humans , Female , Aged , Male , Retrospective Studies , Autopsy , Reproducibility of Results , Pulmonary Embolism/diagnosis , Hemostasis
5.
Clin J Am Soc Nephrol ; 18(9): 1175-1185, 2023 09 01.
Article En | MEDLINE | ID: mdl-37382967

BACKGROUND: Dasatinib has been associated with nephrotoxicity. We sought to examine the incidence of proteinuria on dasatinib and determine potential risk factors that may increase dasatinib-associated glomerular injury. METHODS: We examined glomerular injury through urine albumin-creatinine ratio (UACR) in 82 patients with chronic myelogenous leukemia who were on tyrosine-kinase inhibitor therapy for at least 90 days. t tests were used to compare mean differences in UACR, while regression analysis was used to assess the effects of drug parameters on proteinuria development while on dasatinib. We assayed plasma dasatinib pharmacokinetics using tandem mass spectroscopy and further described a case study of a patient who experienced nephrotic-range proteinuria while on dasatinib. RESULTS: Participants treated with dasatinib ( n =32) had significantly higher UACR levels (median 28.0 mg/g; interquartile range, 11.5-119.5) than participants treated with other tyrosine-kinase inhibitors ( n =50; median 15.0 mg/g; interquartile range, 8.0-35.0; P < 0.001). In total, 10% of dasatinib users exhibited severely increased albuminuria (UACR >300 mg/g) versus zero in other tyrosine-kinase inhibitors. Average steady-state concentrations of dasatinib were positively correlated with UACR ( ρ =0.54, P = 0.03) and duration of treatment ( P = 0.003). There were no associations with elevated BP or other confounding factors. In the case study, kidney biopsy revealed global glomerular damage with diffuse foot process effacement that recovered on termination of dasatinib treatment. CONCLUSIONS: Exposure to dasatinib was associated with a significant chance of developing proteinuria compared with other similar tyrosine-kinase inhibitors. Dasatinib plasma concentration significantly correlated with higher risk of developing proteinuria while receiving dasatinib. PODCAST: This article contains a podcast at https://dts.podtrac.com/redirect.mp3/www.asn-online.org/media/podcast/CJASN/2023_09_08_CJN0000000000000219.mp3.


Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Humans , Dasatinib/adverse effects , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/chemically induced , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/complications , Proteinuria/drug therapy , Albuminuria/drug therapy , Tyrosine/therapeutic use
6.
medRxiv ; 2023 Apr 17.
Article En | MEDLINE | ID: mdl-37131844

Introduction: Dasatinib has been associated with nephrotoxicity. We sought to examine the incidence of proteinuria on dasatinib and determine potential risk factors that may increase dasatinib-associated glomerular injury. Methods: We examine glomerular injury via urine albumin-to-creatinine ratio (UACR) in 101 chronic myelogenous leukemia patients who were on tyrosine-kinase inhibitor (TKI) therapy for at least 90 days. We assay plasma dasatinib pharmacokinetics using tandem mass spectroscopy, and further describe a case study of a patient who experienced nephrotic-range proteinuria while on dasatinib. Results: Patients treated with dasatinib (n= 32) had significantly higher UACR levels (median 28.0 mg/g, IQR 11.5 - 119.5) than patients treated with other TKIs (n=50; median 15.0 mg/g, IQR 8.0 - 35.0; p < 0.001). In total, 10% of dasatinib users exhibited severely increased albuminuria (UACR > 300 mg/g) versus zero in other TKIs. Average steady state concentrations of dasatinib were positively correlated with UACR (ρ = 0.54, p = 0.03) as well as duration of treatment ( p =0.003). There were no associations with elevated blood pressure or other confounding factors. In the case study, kidney biopsy revealed global glomerular damage with diffuse foot process effacement that recovered upon termination of dasatinib treatment. Conclusions: Exposure to dasatinib is associated a significant chance of developing proteinuria compared to other similar TKIs. Dasatinib plasma concentration significantly correlates with increased risk of developing proteinuria while receiving dasatinib. Screening for renal dysfunction and proteinuria is strongly advised for all dasatinib patients.

7.
Am J Hematol ; 98(3): 421-431, 2023 03.
Article En | MEDLINE | ID: mdl-36588413

Monoclonal immunoglobulin deposition disease (MIDD), often associated with plasma cell dyscrasias, predominantly affects the kidneys. In this disease, hematologic response (HR) to treatment can be reliably assessed by International Myeloma Working Group (IMWG) consensus criteria, while uniform criteria for assessing renal response are lacking. We report a retrospective analysis of renal outcomes among 34 patients with MIDD. With most patients treated with bortezomib and autologous stem cell transplantation, 26 of 28 (94%) achieved very good partial HR or better. We demonstrate that both IMWG (based on estimated glomerular filtration rate, eGFR) and amyloid (based on proteinuria) criteria are needed to capture renal response: among 28 evaluable patients, 6 (21%) had isolated proteinuria, while 13 (46%) had isolated decreased eGFR. Using both criteria, which were concordant in patients with both decreased eGFR and proteinuria, 22 of 28 patients (79%) achieved a renal response, including 2 of 7 discontinuing dialyses. All 6 patients (100%) with isolated proteinuria and 7 of 13 (54%) with isolated decreased eGFR achieved renal response, suggesting that isolated proteinuria is an early manifestation of MIDD associated with reversible renal damage. Baseline eGFR predicted renal response (p = .02 by quartile) and survival (p = .02), while HR (CR vs. non-CR) did not, probably because of high HR rate. With a median follow-up of 110 months, the median overall survival was 136 months (95% CI: 79-NR) and median renal survival had not been reached. Prospective studies using uniform renal response criteria are needed to optimize the management of MIDD.


Hematopoietic Stem Cell Transplantation , Multiple Myeloma , Humans , Multiple Myeloma/complications , Multiple Myeloma/drug therapy , Retrospective Studies , Consensus , Prospective Studies , Transplantation, Autologous , Kidney , Proteinuria/etiology , Immunoglobulins
9.
J Immunol Methods ; 512: 113402, 2023 01.
Article En | MEDLINE | ID: mdl-36493873

BACKGROUND: We developed urinary cell mRNA profiling for noninvasive diagnosis of acute T cell mediated rejection (TCMR) and BK virus nephropathy (BKVN), two significant post-transplant complications. Our profiling protocol for the multicenter Clinical Trial of Transplantation-04 (CTOT-04) study consisted of centrifugation of urine to prepare cell pellets, washes, addition of an RNA preservative, storage at 800C and shipment in cold containers to our Gene Expression Monitoring (GEM) Core for RNA isolation and quantification of mRNA in RT-qPCR assays. To simplify profiling, we developed a filter-based protocol (ZFBP) that eliminated the need for centrifugation, RNA preservative, storage at 800C, and shipment in cold containers for mRNA profiling. Furthermore, we trained kidney allograft recipients to perform the filtration of urine at home using the filter and post the urinary cell lysate containing the RNA at ambient temperature to our GEM Core for profiling. Here, we report our refinement of ZFBP and investigation of its diagnostic performance characteristics. METHODS: Total RNA was isolated from kidney allograft biopsy-matched urines using a filter-based protocol complemented by a silica-membrane-based cartridge for mRNA enrichment, the Weill Cornell Hybrid Protocol (WCHP). Absolute copy numbers of CD3ε mRNA, CXCL10 mRNA, and 18S rRNA, components of the CTOT-04 three-gene TCMR diagnostic signature, and urinary cell BKV VP 1 mRNA copy number were measured using RT-qPCR assays. Mann-Whitney test, Fischer exact test, and receiver operating characteristic (ROC) curve analysis were used for data analyses. RESULTS: Urinary cell three-gene TCMR diagnostic signature scores in urines processed using the WCHP discriminated kidney allograft recipients with TCMR (12 TCMR biopsies from 11 patients) from those without TCMR or BKVN (29 No TCMR/No BKVN biopsies from 29 patients). The median (25th and 75th percentiles) score of the CTOT-04 three-gene TCMR diagnostic signature was -0.448 (-1.664, 0.204) in the TCMR group and - 2.542 (-3.267, -1.365) in the No TCMR/ No BKVN group (P = 0.0005, Mann-Whitney test). ROC curve analysis discriminated the TCMR group from the No TCMR/ No BKVN group; the area under the ROC curve (AUROC) was 0.84 (95% Confidence Intervals [CI], 0.69 to 0.98) (P < 0.001), and TCMR was diagnosed with a sensitivity of 67% (95% CI, 35 to 89) at a specificity of 86% (95% CI, 67 to 95) using the CTOT-04 validated cutpoint of -1.213 (P = 0.0016, Fisher exact test). BKV VP1 mRNA copy number in urines processed using the WCHP discriminated patients with BKVN (n = 7) from patients without TCMR or BKVN (n = 29) and the AUROC was 1.0 (95% CI, 1.00 to 1.00) (P < 0.0001) and BKVN was diagnosed with a sensitivity of 86% (95% CI, 42 to 99) at a specificity of 100% (95% CI, 85 to 100) with the previously validated cutpoint of 6.5 × 108 BKV-VP1 mRNA copies per microgram of RNA (P < 0.0001, Fisher exact test). CONCLUSION: Urine processed using the WCHP predicted TCMR and BKVN in kidney allograft recipients. WCHP represents not only a significant advance toward the portability of urinary cell mRNA profiling but also improved patient management by minimizing their visits for urine collection.


BK Virus , Kidney Transplantation , Polyomavirus Infections , Humans , Kidney Transplantation/adverse effects , BK Virus/genetics , RNA, Messenger/genetics , T-Lymphocytes , Kidney , Polyomavirus Infections/diagnosis , RNA , Allografts , Graft Rejection/diagnosis , Graft Rejection/urine , Multicenter Studies as Topic
10.
PLoS One ; 17(6): e0267704, 2022.
Article En | MEDLINE | ID: mdl-35657798

We tested the hypothesis that single-cell RNA-sequencing (scRNA-seq) analysis of human kidney allograft biopsies will reveal distinct cell types and states and yield insights to decipher the complex heterogeneity of alloimmune injury. We selected 3 biopsies of kidney cortex from 3 individuals for scRNA-seq and processed them fresh using an identical protocol on the 10x Chromium platform; (i) HK: native kidney biopsy from a living donor, (ii) AK1: allograft kidney with transplant glomerulopathy, tubulointerstitial fibrosis, and worsening graft function, and (iii) AK2: allograft kidney after successful treatment of active antibody-mediated rejection. We did not study T-cell-mediated rejections. We generated 7217 high-quality single cell transcriptomes. Taking advantage of the recipient-donor sex mismatches revealed by X and Y chromosome autosomal gene expression, we determined that in AK1 with fibrosis, 42 months after transplantation, more than half of the kidney allograft fibroblasts were recipient-derived and therefore likely migratory and graft infiltrative, whereas in AK2 without fibrosis, 84 months after transplantation, most fibroblasts were donor-organ-derived. Furthermore, AK1 was enriched for tubular progenitor cells overexpressing profibrotic extracellular matrix genes. AK2, eight months after successful treatment of rejection, contained plasmablast cells with high expression of immunoglobulins, endothelial cell elaboration of T cell chemoattractant cytokines, and persistent presence of cytotoxic T cells. In addition to these key findings, our analysis revealed unique cell types and states in the kidney. Altogether, single-cell transcriptomics yielded novel mechanistic insights, which could pave the way for individualizing the care of transplant recipients.


Kidney Diseases , Kidney Transplantation , Allografts/pathology , Fibroblasts/pathology , Fibrosis , Graft Rejection , Humans , Kidney/pathology , Kidney Diseases/pathology , Living Donors , Transcriptome
11.
J Am Soc Nephrol ; 32(12): 3114-3129, 2021 12 01.
Article En | MEDLINE | ID: mdl-34716216

BACKGROUND: Autosomal dominant polycystic kidney disease (ADPKD) is a genetic disorder characterized by the development of multiple cysts in the kidneys. It is often caused by pathogenic mutations in PKD1 and PKD2 genes that encode polycystin proteins. Although the molecular mechanisms for cystogenesis are not established, concurrent inactivating germline and somatic mutations in PKD1 and PKD2 have been previously observed in renal tubular epithelium (RTE). METHODS: To further investigate the cellular recessive mechanism of cystogenesis in RTE, we conducted whole-genome DNA sequencing analysis to identify germline variants and somatic alterations in RTE of 90 unique kidney cysts obtained during nephrectomy from 24 unrelated participants. RESULTS: Kidney cysts were overall genomically stable, with low burdens of somatic short mutations or large-scale structural alterations. Pathogenic somatic "second hit" alterations disrupting PKD1 or PKD2 were identified in 93% of the cysts. Of these, 77% of cysts acquired short mutations in PKD1 or PKD2 ; specifically, 60% resulted in protein truncations (nonsense, frameshift, or splice site) and 17% caused non-truncating mutations (missense, in-frame insertions, or deletions). Another 18% of cysts acquired somatic chromosomal loss of heterozygosity (LOH) events encompassing PKD1 or PKD2 ranging from 2.6 to 81.3 Mb. 14% of these cysts harbored copy number neutral LOH events, while the other 3% had hemizygous chromosomal deletions. LOH events frequently occurred at chromosomal fragile sites, or in regions comprising chromosome microdeletion diseases/syndromes. Almost all somatic "second hit" alterations occurred at the same germline mutated PKD1/2 gene. CONCLUSIONS: These findings further support a cellular recessive mechanism for cystogenesis in ADPKD primarily caused by inactivating germline and somatic variants of PKD1 or PKD2 genes in kidney cyst epithelium.


Cysts , Polycystic Kidney, Autosomal Dominant , Humans , Polycystic Kidney, Autosomal Dominant/genetics , Mutation , Epithelial Cells , TRPP Cation Channels/genetics
12.
J Thromb Haemost ; 19(10): 2514-2521, 2021 10.
Article En | MEDLINE | ID: mdl-34255928

BACKGROUND: The International Society on Thrombosis and Haemostasis (ISTH)'s Scientific and Standardization Committee (SSC) recently proposed a definition of pulmonary embolism (PE)-related death. OBJECTIVES: To evaluate the accuracy and interrater reliability of the ISTH definition of PE-related death in an autopsy cohort. METHODS: We reviewed reports of 1064 consecutive adult autopsies that were performed at the NewYork-Presbyterian Hospital from January 2010 until July 2019. We included all patients with autopsy-confirmed PE-related death (cases) during that time frame, combined with patients who died in 2018 from a cause other than PE (controls). Based on clinical summaries, two adjudicators independently adjudicated the cause of death in each patient using the ISTH classification for the cause of death, blinded to the case/control status and ratio. The primary outcome was autopsy-confirmed PE-related death. We determined the sensitivity and specificity of the ISTH definition to identify autopsy-confirmed PE-related death, and its interrater reliability using the percentage agreement and Cohen's kappa. RESULTS: A total of 126 patients who underwent autopsy were included in the analysis (median age, 68 years [range, 21-94], 60 [48%] women), of which 29 (23%) had died from PE as confirmed by autopsy. The ISTH definition's sensitivity and specificity for autopsy-confirmed PE-related death were 45% (95% CI, 26-64) and 99% (95% CI, 94-100), respectively. Interrater reliability for PE-related death was substantial (percentage agreement, 94% [95% CI, 89-97]; kappa, 0.73 [95% CI, 0.55-0.97]). CONCLUSION: Adjudication of the cause of death using the ISTH definition resulted in very high specificity, moderate sensitivity, and good interrater reliability for PE-related death.


Pulmonary Embolism , Thrombosis , Venous Thromboembolism , Aged , Autopsy , Cause of Death , Female , Hemostasis , Humans , Pulmonary Embolism/diagnosis , Reproducibility of Results , Venous Thromboembolism/diagnosis
13.
Pathobiology ; 88(1): 56-68, 2021.
Article En | MEDLINE | ID: mdl-32942274

BACKGROUND: A novel coronavirus, SARS-CoV-2, was identified in Wuhan, China in late 2019. This virus rapidly spread around the world causing disease ranging from minimal symptoms to severe pneumonia, which was termed coronavirus disease (i.e., COVID). Postmortem examination is a valuable tool for studying the pathobiology of this new infection. METHODS: We report the clinicopathologic findings from 32 autopsy studies conducted on patients who died of COVID-19 including routine gross and microscopic examination with applicable special and immunohistochemical staining techniques. RESULTS: SARS-CoV-2 infection was confirmed by nasopharyngeal RT-PCR in 31 cases (97%) and by immunohistochemical staining for SARS-CoV-2 spike-protein in the lung in the remaining 1 case (3%). The ethnically diverse cohort consisted of 22 males and 10 females with a mean age of 68 years (range: 30-100). Patients most commonly presented with cough (17 [55%]), shortness of breath (26 [81%]), and a low-grade fever (17 [55%]). Thirty-one (97%) of the patients had at least 1 comorbidity (mean = 4). Twenty-eight patients (88%) had widespread thromboembolic disease, as well as diffuse alveolar damage (30 [94%]), diabetic nephropathy (17 [57%]) and acute tubular injury. Patterns of liver injury were heterogeneous, featuring 10 (36%) with frequent large basophilic structures in sinusoidal endothelium, and increased immunoblast-like cells in lymph nodes. CONCLUSION: This series of autopsies from patients with COVID-19 confirms the observation that the majority of severely affected patients have significant pulmonary pathology. However, many patients also have widespread microscopic thromboses, as well as characteristic findings in the liver and lymph nodes.


COVID-19/virology , Lung/virology , Adult , Aged , Autopsy/methods , COVID-19/pathology , Female , Humans , Lung/pathology , Male , Middle Aged , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism
14.
Glomerular Dis ; 1(4): 205-236, 2021 Oct.
Article En | MEDLINE | ID: mdl-36751386

Background: The common causes of renal transplant complications include active or chronic rejection process, infections, and toxicity but also recurrent or de novo diseases, which play an important role in affecting long-term graft function or graft loss. Summary: Recurrent disease in renal transplantation is defined as recurrence of the original kidney disease leading to end-stage kidney disease. They comprise a heterogeneous group of predominantly glomerular and some tubulointerstitial and vascular lesions, which include primary kidney diseases (e.g., focal segmental glomerulosclerosis, membranous glomerulonephritis, and IgA nephropathy) or those secondary to systemic autoimmune, metabolic, and infectious processes that can range from subclinical to clinically overt acute, subacute, or chronic clinical presentations. In addition to the knowledge of prior renal disease and routine/periodic serum and urine testing for kidney function, a complete transplant renal biopsy examination is essential in the identification and differentiation of these diseases. The time of onset and severity of these diseases depend on the underlying etiopathogenetic mechanisms and the varied rates of recurrence in the early or late posttransplant period, often being modified by the current immunosuppressive protocols and other donor and recipient predisposing characteristics. Key Messages: Transplant kidney biopsy findings provide diagnostic accuracy and prognostic information regarding the potential for reversibility along with detection of unsuspected or clinically symptomatic recurrent diseases, with any concomitant rejection process or toxicity, for appropriate therapeutic decision-making. Routine electron microscopy in transplant kidney biopsies is a valuable tool in recognizing fully developed or early/subtle features of evolving recurrent diseases, often during the subclinical phases, in for cause or surveillance allograft biopsies.

15.
Glomerular Dis ; 1(3): 160-172, 2021 Aug.
Article En | MEDLINE | ID: mdl-36751493

Background: De novo glomerular diseases comprising those both common and unique to transplant may develop in the renal allograft leading to posttransplant proteinuria, hematuria, or allograft failure. Electron microscopy (EM) is a useful adjunct to the standard light and immunofluorescence microscopy for accurately diagnosing these diseases and subsequently aiding the clinician in initiating appropriate treatments. Summary: De novo diseases are those new-onset diseases in renal transplantation that are unrelated to the original kidney disease in the recipient. They include virtually any primary or secondary glomerular, tubulointerstitial, or vascular diseases, ranging from subclinical to clinically overt, having acute, subacute, or chronic clinical presentations. This review focuses on common or significant, mainly glomerular, entities, with particular attention to the EM findings. The time of onset, stage, and severity of these diseases may often be modified by the current immunosuppressive protocols and other donor and recipient predisposing characteristics. Key Messages: A renal allograft biopsy not only improves our understanding of the pathophysiology but also provides diagnostic accuracy prognostic information, and potential for reversibility. In some cases, the biopsy leads to detection of unsuspected or clinically asymptomatic de novo diseases in the setting of other concomitant rejection processes, infection, or toxicity, which can dictate appropriate therapy. Routine EM in transplant kidney biopsies is a valuable modality in recognizing fully developed or early/subtle features of evolving de novo diseases, often during the subclinical phases, in "for cause" or surveillance/protocol allograft biopsies.

16.
Mod Pathol ; 33(11): 2156-2168, 2020 11.
Article En | MEDLINE | ID: mdl-32879413

SARS-CoV-2, the etiologic agent of COVID-19, is a global pandemic with substantial mortality dominated by acute respiratory distress syndrome. We systematically evaluated lungs of 68 autopsies from 3 institutions in heavily hit areas (2 USA, 1 Italy). Detailed evaluation of several compartments (airways, alveolar walls, airspaces, and vasculature) was performed to determine the range of histologic features. The cohort consisted of 47 males and 21 females with a median age of 73 years (range 30-96). Co-morbidities were present in most patients with 60% reporting at least three conditions. Tracheobronchitis was frequently present, independent from intubation or superimposed pneumonia. Diffuse alveolar damage (DAD) was seen in 87% of cases. Later phases of DAD were less frequent and correlated with longer duration of disease. Large vessel thrombi were seen in 42% of cases but platelet (CD61 positive) and/or fibrin microthrombi were present at least focally in 84%. Ultrastructurally, small vessels showed basal membrane reduplication and significant endothelial swelling with cytoplasmic vacuolization. In a subset of cases, virus was detected using different tools (immunohistochemistry for SARS-CoV-2 viral spike protein, RNA in situ hybridization, lung viral culture, and electron microscopy). Virus was seen in airway epithelium and type 2 pneumocytes. IHC or in situ detection, as well as viable form (lung culture positive) was associated with the presence of hyaline membranes, usually within 2 weeks but up to 4 weeks after initial diagnosis. COVID-19 pneumonia is a heterogeneous disease (tracheobronchitis, DAD, and vascular injury), but with consistent features in three centers. The pulmonary vasculature, with capillary microthrombi and inflammation, as well as macrothrombi, is commonly involved. Viral infection in areas of ongoing active injury contributes to persistent and temporally heterogeneous lung damage.


Coronavirus Infections/pathology , Coronavirus Infections/virology , Lung/pathology , Lung/virology , Pneumonia, Viral/pathology , Adult , Aged , Aged, 80 and over , Autopsy , Betacoronavirus , COVID-19 , Cohort Studies , Female , Humans , Italy , Male , Middle Aged , New York City , Pandemics , Pneumonia, Viral/virology , Retrospective Studies , SARS-CoV-2
17.
Cell ; 182(2): 429-446.e14, 2020 07 23.
Article En | MEDLINE | ID: mdl-32526206

The mode of acquisition and causes for the variable clinical spectrum of coronavirus disease 2019 (COVID-19) remain unknown. We utilized a reverse genetics system to generate a GFP reporter virus to explore severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pathogenesis and a luciferase reporter virus to demonstrate sera collected from SARS and COVID-19 patients exhibited limited cross-CoV neutralization. High-sensitivity RNA in situ mapping revealed the highest angiotensin-converting enzyme 2 (ACE2) expression in the nose with decreasing expression throughout the lower respiratory tract, paralleled by a striking gradient of SARS-CoV-2 infection in proximal (high) versus distal (low) pulmonary epithelial cultures. COVID-19 autopsied lung studies identified focal disease and, congruent with culture data, SARS-CoV-2-infected ciliated and type 2 pneumocyte cells in airway and alveolar regions, respectively. These findings highlight the nasal susceptibility to SARS-CoV-2 with likely subsequent aspiration-mediated virus seeding to the lung in SARS-CoV-2 pathogenesis. These reagents provide a foundation for investigations into virus-host interactions in protective immunity, host susceptibility, and virus pathogenesis.


Betacoronavirus/genetics , Coronavirus Infections/pathology , Coronavirus Infections/virology , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , Respiratory System/virology , Reverse Genetics/methods , Aged , Angiotensin-Converting Enzyme 2 , Animals , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Betacoronavirus/immunology , Betacoronavirus/pathogenicity , COVID-19 , Cell Line , Cells, Cultured , Chlorocebus aethiops , Coronavirus Infections/immunology , Coronavirus Infections/therapy , Cystic Fibrosis/pathology , DNA, Recombinant , Female , Furin/metabolism , Humans , Immunization, Passive , Lung/metabolism , Lung/pathology , Lung/virology , Male , Middle Aged , Nasal Mucosa/metabolism , Nasal Mucosa/pathology , Nasal Mucosa/virology , Pandemics , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/immunology , Respiratory System/pathology , SARS-CoV-2 , Serine Endopeptidases/metabolism , Vero Cells , Virulence , Virus Replication , COVID-19 Serotherapy
18.
Blood ; 136(10): 1169-1179, 2020 09 03.
Article En | MEDLINE | ID: mdl-32597954

COVID-19 affects millions of patients worldwide, with clinical presentation ranging from isolated thrombosis to acute respiratory distress syndrome (ARDS) requiring ventilator support. Neutrophil extracellular traps (NETs) originate from decondensed chromatin released to immobilize pathogens, and they can trigger immunothrombosis. We studied the connection between NETs and COVID-19 severity and progression. We conducted a prospective cohort study of COVID-19 patients (n = 33) and age- and sex-matched controls (n = 17). We measured plasma myeloperoxidase (MPO)-DNA complexes (NETs), platelet factor 4, RANTES, and selected cytokines. Three COVID-19 lung autopsies were examined for NETs and platelet involvement. We assessed NET formation ex vivo in COVID-19 neutrophils and in healthy neutrophils incubated with COVID-19 plasma. We also tested the ability of neonatal NET-inhibitory factor (nNIF) to block NET formation induced by COVID-19 plasma. Plasma MPO-DNA complexes increased in COVID-19, with intubation (P < .0001) and death (P < .0005) as outcome. Illness severity correlated directly with plasma MPO-DNA complexes (P = .0360), whereas Pao2/fraction of inspired oxygen correlated inversely (P = .0340). Soluble and cellular factors triggering NETs were significantly increased in COVID-19, and pulmonary autopsies confirmed NET-containing microthrombi with neutrophil-platelet infiltration. Finally, COVID-19 neutrophils ex vivo displayed excessive NETs at baseline, and COVID-19 plasma triggered NET formation, which was blocked by nNIF. Thus, NETs triggering immunothrombosis may, in part, explain the prothrombotic clinical presentations in COVID-19, and NETs may represent targets for therapeutic intervention.


Coronavirus Infections/complications , Extracellular Traps/immunology , Neutrophils/immunology , Pneumonia, Viral/complications , Thrombosis/complications , Adult , Aged , Betacoronavirus/immunology , Blood Platelets/immunology , Blood Platelets/pathology , Blood Proteins/immunology , COVID-19 , Coronavirus Infections/immunology , Coronavirus Infections/pathology , Female , Humans , Male , Middle Aged , Neutrophil Infiltration , Neutrophils/pathology , Pandemics , Peroxidase/immunology , Pneumonia, Viral/immunology , Pneumonia, Viral/pathology , Prospective Studies , SARS-CoV-2 , Thrombosis/immunology , Thrombosis/pathology
20.
JCI Insight ; 5(4)2020 02 27.
Article En | MEDLINE | ID: mdl-32102984

BACKGROUNDRNA sequencing (RNA-Seq) is a molecular tool to analyze global transcriptional changes, deduce pathogenic mechanisms, and discover biomarkers. We performed RNA-Seq to investigate gene expression and biological pathways in urinary cells and kidney allograft biopsies during an acute rejection episode and to determine whether urinary cell gene expression patterns are enriched for biopsy transcriptional profiles.METHODSWe performed RNA-Seq of 57 urine samples collected from 53 kidney allograft recipients (patients) with biopsies classified as acute T cell-mediated rejection (TCMR; n = 22), antibody-mediated rejection (AMR; n = 8), or normal/nonspecific changes (No Rejection; n = 27). We also performed RNA-Seq of 49 kidney allograft biopsies from 49 recipients with biopsies classified as TCMR (n = 12), AMR (n = 17), or No Rejection (n = 20). We analyzed RNA-Seq data for differential gene expression, biological pathways, and gene set enrichment across diagnoses and across biospecimens.RESULTSWe identified unique and shared gene signatures associated with biological pathways during an episode of TCMR or AMR compared with No Rejection. Gene Set Enrichment Analysis demonstrated enrichment for TCMR biopsy signature and AMR biopsy signature in TCMR urine and AMR urine, irrespective of whether the biopsy and urine were from the same or different patients. Cell type enrichment analysis revealed a diverse cellular landscape with an enrichment of immune cell types in urinary cells compared with biopsies.CONCLUSIONSRNA-Seq of urinary cells and biopsies, in addition to identifying enriched gene signatures and pathways associated with TCMR or AMR, revealed genomic changes between TCMR and AMR, as well as between allograft biopsies and urinary cells.


Graft Rejection/genetics , Kidney Transplantation , RNA, Messenger/urine , Transcriptome , Acute Disease , Allografts , Biopsy , Humans , Kidney/pathology , Sequence Analysis, RNA
...