Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 9 de 9
1.
Microbiol Resour Announc ; 12(4): e0110622, 2023 Apr 18.
Article En | MEDLINE | ID: mdl-36861977

Five siphoviruses were isolated from soil in southeastern Pennsylvania using Microbacterium foliorum. Bacteriophages NeumannU and Eightball have 25 predicted genes, Chivey and Hiddenleaf have 87 genes, and GaeCeo has 60 genes. Based on gene content similarity to sequenced actinobacteriophages, these five phages are distributed across clusters EA, EE, and EF.

2.
PLoS One ; 16(10): e0259161, 2021.
Article En | MEDLINE | ID: mdl-34705875

There is little information on the impacts of climate change on resource partitioning for mixotrophic phytoplankton. Here, we investigated the hypothesis that light interacts with temperature and CO2 to affect changes in growth and cellular carbon and nitrogen content of the mixotrophic dinoflagellate, Karlodinium veneficum, with increasing cellular carbon and nitrogen content under low light conditions and increased growth under high light conditions. Using a multifactorial design, the interactive effects of light, temperature and CO2 were investigated on K. veneficum at ambient temperature and CO2 levels (25°C, 375 ppm), high temperature (30°C, 375 ppm CO2), high CO2 (30°C, 750 ppm CO2), or a combination of both high temperature and CO2 (30°C, 750 ppm CO2) at low light intensities (LL: 70 µmol photons m-2 s-2) and light-saturated conditions (HL: 140 µmol photons m-2 s-2). Results revealed significant interactions between light and temperature for all parameters. Growth rates were not significantly different among LL treatments, but increased significantly with temperature or a combination of elevated temperature and CO2 under HL compared to ambient conditions. Particulate carbon and nitrogen content increased in response to temperature or a combination of elevated temperature and CO2 under LL conditions, but significantly decreased in HL cultures exposed to elevated temperature and/or CO2 compared to ambient conditions at HL. Significant increases in C:N ratios were observed only in the combined treatment under LL, suggesting a synergistic effect of temperature and CO2 on carbon assimilation, while increases in C:N under HL were driven only by an increase in CO2. Results indicate light-driven variations in growth and nutrient acquisition strategies for K. veneficum that may benefit this species under anticipated climate change conditions (elevated light, temperature and pCO2) while also affecting trophic transfer efficiency during blooms of this species.


Biomass , Dinoflagellida/metabolism , Eutrophication , Carbon Dioxide/metabolism , Dinoflagellida/growth & development , Hot Temperature , Nitrogen/metabolism , Sunlight
3.
Appl Environ Microbiol ; 81(17): 5703-13, 2015 Sep 01.
Article En | MEDLINE | ID: mdl-26070682

Vibrio species are an abundant and diverse group of bacteria that form associations with phytoplankton. Correlations between Vibrio and phytoplankton abundance have been noted, suggesting that growth is enhanced during algal blooms or that association with phytoplankton provides a refuge from predation. Here, we investigated relationships between particle-associated Vibrio spp. and phytoplankton in Delaware's inland bays (DIB). The relative abundances of particle-associated Vibrio spp. and algal classes that form blooms in DIB (dinoflagellates, diatoms, and raphidophytes) were determined using quantitative PCR. The results demonstrated a significant correlation between particle-associated Vibrio abundance and phytoplankton, with higher correlations to diatoms and raphidophytes than to dinoflagellates. Species-specific associations were examined during a mixed bloom of Heterosigma akashiwo and Fibrocapsa japonica (Raphidophyceae) and indicated a significant positive correlation for particle-associated Vibrio abundance with H. akashiwo but a negative correlation with F. japonica. Changes in Vibrio assemblages during the bloom were evaluated using automated ribosomal intergenic spacer analysis (ARISA), which revealed significant differences between each size fraction but no significant change in Vibrio assemblages over the course of the bloom. Microzooplankton grazing experiments showed that losses of particle-associated Vibrio spp. may be offset by increased growth in the Vibrio population. Moreover, analysis of Vibrio assemblages by ARISA also indicated an increase in the relative abundance for specific members of the Vibrio community despite higher grazing pressure on the particle-associated population as a whole. The results of this investigation demonstrate links between phytoplankton and Vibrio that may lead to predictions of potential health risks and inform future management practices in this region.


Diatoms/microbiology , Dinoflagellida/microbiology , Ecosystem , Phytoplankton/microbiology , Stramenopiles/microbiology , Vibrio/isolation & purification , Bays , Delaware , Diatoms/physiology , Dinoflagellida/physiology , Molecular Sequence Data , Phytoplankton/classification , Phytoplankton/physiology , Species Specificity , Stramenopiles/physiology , Vibrio/classification , Vibrio/genetics , Vibrio/growth & development
4.
Toxicon ; 95: 23-9, 2015 Mar.
Article En | MEDLINE | ID: mdl-25557071

High concentrations of the neurotoxin tetrodotoxin (TTX) were detected by liquid chromatography-mass spectrometry (LC-MS) in the Platyhelminthes Stylochoplana sp. from Pilot Bay (Tauranga, New Zealand). This is the first detection of TTX in this genus. Concentrations were monitored from March to November (2013) and found to significantly decrease from a peak in July (avg. 551 mg kg(-1)) to November (avg. 140 mg kg(-1)). Stylochoplana sp. co-occurred with TTX-containing Pleurobranchaea maculata (Opisthobranchia). A Stylochoplana sp.-specific real-time PCR assay was developed targeting the mitochondrial cytochrome c oxidase subunit I gene to determine if P. maculata consumed Stylochoplana sp. Positive Stylochoplana sp. signals were obtained for 7 of 19 P. maculata tested. Mass calculations indicate Stylochoplana sp. could supply Pilot Bay P. maculata with the TTX required to account for the concentrations reported in previous studies (ca. 1.04 mg TTX per individual) based on an ingestion rate of one individual every 2-3 days throughout their lifetime. However, due to the lack of Stylochoplana sp. in areas with dense P. maculata populations, and high concentration (ca. 1400 mg kg(-1)) of TTX detected in some individuals, it is unlikely that Stylochoplana sp. represent the sole source of TTX in P. maculata.


Platyhelminths/chemistry , Pleurobranchaea , Tetrodotoxin/isolation & purification , Animals , Chromatography, Liquid , DNA, Helminth/genetics , Genes, Helminth , Mass Spectrometry , New Zealand , Pilot Projects , Platyhelminths/genetics , RNA, Ribosomal, 18S/genetics , Real-Time Polymerase Chain Reaction , Specimen Handling
5.
Mar Drugs ; 13(2): 756-69, 2015 Jan 28.
Article En | MEDLINE | ID: mdl-25636158

Tetrodotoxin (TTX), is a potent neurotoxin targeting sodium channels that has been identified in multiple marine and terrestrial organisms. It was recently detected in the Opisthobranch Pleurobranchaea maculata and a Platyhelminthes Stylochoplana sp. from New Zealand. Knowledge on the distribution of TTX within these organisms is important to assist in elucidating the origin and ecological role of this toxin. Intracellular micro-distribution of TTX was investigated using a monoclonal antibody-based immunoenzymatic technique. Tetrodotoxin was strongly localized in neutral mucin cells and the basement membrane of the mantle, the oocytes and follicles of the gonad tissue, and in the digestive tissue of P. maculata. The ova and pharynx were the only two structures to contain TTX in Stylochoplana sp. Using liquid chromatography-mass spectrometry, TTX was identified in the larvae and eggs, but not the gelatinous egg cases of P. maculata. Tetrodotoxin was present in egg masses of Stylochoplana sp. These data suggest that TTX has a defensive function in adult P. maculata, who then invest this in their progeny for protection. Localization in the digestive tissue of P. maculata potentially indicates a dietary source of TTX. Stylochoplana sp. may use TTX in prey capture and for the protection of offspring.


Gastropoda/chemistry , Tetrodotoxin/analysis , Turbellaria/chemistry , Animals , Basement Membrane/chemistry , Chromatography, High Pressure Liquid , Gastrointestinal Tract/chemistry , Gonads/chemistry , Immunohistochemistry , Larva/chemistry , Mass Spectrometry , Oocytes/chemistry , Ovum/chemistry
6.
Toxins (Basel) ; 7(2): 255-73, 2015 Jan 28.
Article En | MEDLINE | ID: mdl-25635464

Tetrodotoxin (TTX) is a potent neurotoxin found in the tissues of many taxonomically diverse organisms. Its origin has been the topic of much debate, with suggestions including endogenous production, acquisition through diet, and symbiotic bacterial synthesis. Bacterial production of TTX has been reported in isolates from marine biota, but at lower than expected concentrations. In this study, 102 strains were isolated from Pleurobranchaea maculata (Opisthobranchia) and Stylochoplana sp. (Platyhelminthes). Tetrodotoxin production was tested utilizing a recently developed sensitive method to detect the C9 base of TTX via liquid chromatography-mass spectrometry. Bacterial strains were characterized by sequencing a region of the 16S ribosomal RNA gene. To account for the possibility that TTX is produced by a consortium of bacteria, a series of experiments using marine broth spiked with various P. maculata tissues were undertaken. Sixteen unique strains from P. maculata and one from Stylochoplana sp. were isolated, representing eight different genera; Pseudomonadales, Actinomycetales, Oceanospirillales, Thiotrichales, Rhodobacterales, Sphingomonadales, Bacillales, and Vibrionales. Molecular fingerprinting of bacterial communities from broth experiments showed little change over the first four days. No C9 base or TTX was detected in isolates or broth experiments (past day 0), suggesting a culturable microbial source of TTX in P. maculata and Stylochoplana sp. is unlikely.


Bacteria/metabolism , Microbial Consortia/physiology , Platyhelminths/microbiology , Pleurobranchaea/microbiology , Tetrodotoxin/biosynthesis , Animals , Bacteria/classification , Bacteria/genetics , Chromatography, Liquid , Mass Spectrometry , Microbial Consortia/genetics , Phylogeny , RNA, Ribosomal, 16S/genetics , Tetrodotoxin/analysis
7.
Mar Drugs ; 12(1): 1-16, 2013 Dec 24.
Article En | MEDLINE | ID: mdl-24368566

The origin of tetrodotoxin (TTX) is highly debated; researchers have postulated either an endogenous or exogenous source with the host accumulating TTX symbiotically or via food chain transmission. The aim of this study was to determine whether the grey side-gilled sea slug (Pleurobranchaea maculata) could obtain TTX from a dietary source, and to attempt to identify this source through environmental surveys. Eighteen non-toxic P. maculata were maintained in aquariums and twelve were fed a TTX-containing diet. Three P. maculata were harvested after 1 h, 24 h, 17 days and 39 days and TTX concentrations in their stomach, gonad, mantle and remaining tissue/fluids determined using liquid chromatography-mass spectrometry. Tetrodotoxin was detected in all organs/tissue after 1 h with an average uptake of 32%. This decreased throughout the experiment (21%, 15% and 9%, respectively). Benthic surveys at sites with dense populations of toxic P. maculata detected very low or no TTX in other organisms. This study demonstrates that P. maculata can accumulate TTX through their diet. However, based on the absence of an identifiable TTX source in the environment, in concert with the extremely high TTX concentrations and short life spans of P. maculata, it is unlikely to be the sole TTX source for this species.


Diet , Pleurobranchaea/metabolism , Tetrodotoxin/analysis , Animals , Chromatography, High Pressure Liquid , Environment , Freeze Drying , New Zealand , Pleurobranchaea/chemistry , Tandem Mass Spectrometry , Tetrodotoxin/pharmacokinetics , Tissue Distribution
8.
Toxicon ; 74: 27-33, 2013 Nov.
Article En | MEDLINE | ID: mdl-23916603

High concentrations of tetrodotoxin (TTX) have been detected in some New Zealand populations of Pleurobranchaea maculata (grey side-gilled sea slug). Within toxic populations there is significant variability in TTX concentrations among individuals, with up to 60-fold differences measured. This variability has led to challenges when conducting controlled laboratory experiments. The current method for assessing TTX concentrations within P. maculata is lethal, thus multiple individuals must be harvested at each sampling point to produce statistically meaningful data. In this study a method was developed for taking approximately 200 mg tissue biopsies using a TemnoEvolution(®) 18G × 11 cm Biopsy Needle inserted transversely into the foot. Correlation between the TTX concentrations in the biopsy sample and total TTX levels and in individual tissues were assessed. Six P. maculata were biopsied twice (nine days apart) and each individual was frozen immediately following the second sampling. Tetrodotoxin concentrations in biopsy samples and in the gonad, stomach, mantle and the remaining combined tissues and fluids were measured using liquid chromatography-mass spectrometry. Based on the proportional weight of the organs/tissues a total TTX concentration for each individual was calculated. There were strong correlations between biopsy TTX concentrations and the total (r(2) = 0.88), stomach (r(2) = 0.92) and gonad (r(2) = 0.83) TTX concentrations. This technique will enable more robust laboratory studies to be undertaken, thereby assisting in understanding TTX kinetics, ecological function and origin within P. maculata.


Biopsy/methods , Gills/chemistry , Pleurobranchaea/chemistry , Tetrodotoxin/analysis , Animals , Chromatography, Liquid , Gonads/chemistry , Mass Spectrometry , New Zealand
9.
J Chem Ecol ; 38(11): 1342-50, 2012 Nov.
Article En | MEDLINE | ID: mdl-23151964

Depuration of tetrodotoxin (TTX) was investigated in adult grey side-gilled sea slugs, Pleurobranchaea maculata, maintained in captivity on a TTX-free diet. Three adults were harvested every 21 days for 126 days, and TTX concentrations were measured in organs/tissues and egg masses. Automated rRNA intergenic spacer analysis (ARISA) was used to investigate bacterial community structure in selected samples. Linear modeling of adult data demonstrated a decline (P<0.001) in average total TTX concentrations over time. Temporal data obtained from a wild population showed similar depuration rates, indicating that once adults reach a certain size, or sexual maturity, TTX is no longer produced or acquired substantially. Depuration rates differed among organs, with concentrations in the heart declining the fastest. The gonads had the slowest and least significant depuration rate indicating, at most, weak depuration of this tissue. There was a strong correlation (R(2)=0.66) between TTX concentrations in the first-laid egg masses and total TTX in the corresponding adult. These data suggest that adult P. maculata transfer TTX to their offspring, and presumably that functions as a chemical defense. ARISA data showed a shift in bacterial community structure within 3 weeks of introduction to captivity. Based on the combined data, the exact origin of TTX in P. maculata is unclear, with evidence both in favor and against a dietary source, and endogenous or bacterial production.


Bacterial Physiological Phenomena , Ovum/microbiology , Pleurobranchaea/metabolism , Pleurobranchaea/microbiology , Tetrodotoxin/analysis , Animals , Bacteria/genetics , Chromatography, High Pressure Liquid , Gonads/metabolism , Mass Spectrometry , Myocardium/metabolism , Ovum/metabolism , Pleurobranchaea/growth & development , Polymerase Chain Reaction , RNA, Ribosomal/analysis
...