Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 10 de 10
1.
Genet Med ; 26(3): 101041, 2024 Mar.
Article En | MEDLINE | ID: mdl-38054406

PURPOSE: The main objective of this study was to assess clinical features and genome-wide DNA methylation profiles in individuals affected by intellectual developmental disorder, autosomal dominant 21 (IDD21) syndrome, caused by variants in the CCCTC-binding factor (CTCF) gene. METHODS: DNA samples were extracted from peripheral blood of 16 individuals with clinical features and genetic findings consistent with IDD21. DNA methylation analysis was performed using the Illumina Infinium Methylation EPIC Bead Chip microarrays. The methylation levels were fitted in a multivariate linear regression model to identify the differentially methylated probes. A binary support vector machine classification model was constructed to differentiate IDD21 samples from controls. RESULTS: We identified a highly specific, reproducible, and sensitive episignature associated with CTCF variants. Six variants of uncertain significance were tested, of which 2 mapped to the IDD21 episignature and clustered alongside IDD21 cases in both heatmap and multidimensional scaling plots. Comparison of the genomic DNA methylation profile of IDD21 with that of 56 other neurodevelopmental disorders provided insights into the underlying molecular pathophysiology of this disorder. CONCLUSION: The robust and specific CTCF/IDD21 episignature expands the growing list of neurodevelopmental disorders with distinct DNA methylation profiles, which can be applied as supporting evidence in variant classification.


Intellectual Disability , Neurodevelopmental Disorders , Humans , Developmental Disabilities/genetics , DNA Methylation/genetics , Intellectual Disability/genetics , Neurodevelopmental Disorders/genetics , Syndrome
2.
Hum Genet ; 142(6): 785-808, 2023 Jun.
Article En | MEDLINE | ID: mdl-37079061

Deleterious variants in collagen genes are the most common cause of hereditary connective tissue disorders (HCTD). Adaptations of the American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) criteria are still lacking. A multidisciplinary team was set up for developing specifications of the ACMG/AMP criteria for COL1A1, COL1A2, COL2A1, COL3A1, COL5A1, COL5A2, COL11A1, COL11A2 and COL12A1, associated with various forms of HCTD featuring joint hypermobility, which is becoming one of the most common reasons of referral for molecular testing in this field. Such specifications were validated against 209 variants, and resulted effective for classifying as pathogenic and likely pathogenic null alleles without downgrading of the PVS1 level of strength and recurrent Glycine substitutions. Adaptations of selected criteria reduced uncertainties on private Glycine substitutions, intronic variants predicted to affect the splicing, and null alleles with a downgraded PVS1 level of strength. Segregation and multigene panel sequencing data mitigated uncertainties on non-Glycine substitutions by the attribution of one or more benignity criteria. These specifications may improve the clinical utility of molecular testing in HCTD by reducing the number of variants with neutral/conflicting interpretations. Close interactions between laboratory and clinicians are crucial to estimate the a priori utility of molecular test and to improve medical reports.


Genetic Variation , Joint Instability , Humans , United States , Genetic Testing/methods , Joint Instability/diagnosis , Joint Instability/genetics , Sequence Analysis, DNA/methods
3.
Front Neurol ; 14: 1090082, 2023.
Article En | MEDLINE | ID: mdl-36824420

Biallelic loss-of-function variants in MED23 cause a recessive syndromic intellectual disability condition with or without epilepsy (MRT18). Due to the small number of reported individuals, the clinical phenotype of the disorder has not been fully delineated yet, and the spectrum and frequency of neurologic features have not been fully characterized. Here, we report a 5-year-old girl with compound heterozygous for two additional MED23 variants. Besides global developmental delay, axial hypotonia and peripheral increased muscular tone, absent speech, and generalized tonic seizures, which fit well MRT18, the occurrence of postnatal progressive microcephaly has been here documented. A retrospective assessment of the previously reported clinical data for these subjects confirms the occurrence of postnatal progressive microcephaly as a previously unappreciated feature of the phenotype of MED23-related disorder.

4.
Ital J Pediatr ; 48(1): 152, 2022 Aug 19.
Article En | MEDLINE | ID: mdl-35986401

BACKGROUND: Noonan and Noonan-like syndromes are multisystem genetic disorders, mainly with autosomal dominant trasmission, caused by mutations in several genes. Missense pathogenetic variants of SOS1 gene are the second most common cause of Noonan syndrome (NS) and account approximately for 13% to 17% of cases. Subjects carrying a pathogenetic variant in SOS1 gene tend to exhibit a distinctive phenotype that is characterized by ectodermal abnormalities. Cutis verticis gyrata (CVG) is a rare disease, congenital or acquired, characterized by the redundancy of skin on scalp, forming thick skin folds and grooves of similar aspect to cerebral cortex gyri. Several references in the literature have reported association between nonessential primary form of CVG and NS. CASE PRESENTATION: we report two cases of newborns with CVG and phenotype suggestive for NS who have been diagnosed to harbour the same pathogenetic variant in SOS1 gene. CONCLUSIONS: previously described patients with NS presenting CVG had received only clinical diagnosis. Therefore we report the first patients with CVG in which the clinical suspicion of NS is confirmed by molecolar analysis.


Noonan Syndrome , Humans , Noonan Syndrome/complications , Noonan Syndrome/diagnosis , Noonan Syndrome/genetics , Rare Diseases , Scalp/abnormalities , Scalp/pathology
5.
Int J Mol Sci ; 23(6)2022 Mar 13.
Article En | MEDLINE | ID: mdl-35328505

The X-linked gene encoding aristaless-related homeobox (ARX) is a bi-functional transcription factor capable of activating or repressing gene transcription, whose mutations have been found in a wide spectrum of neurodevelopmental disorders (NDDs); these include cortical malformations, paediatric epilepsy, intellectual disability (ID) and autism. In addition to point mutations, duplications of the ARX locus have been detected in male patients with ID. These rearrangements include telencephalon ultraconserved enhancers, whose structural alterations can interfere with the control of ARX expression in the developing brain. Here, we review the structural features of 15 gain copy-number variants (CNVs) of the ARX locus found in patients presenting wide-ranging phenotypic variations including ID, speech delay, hypotonia and psychiatric abnormalities. We also report on a further novel Xp21.3 duplication detected in a male patient with moderate ID and carrying a fully duplicated copy of the ARX locus and the ultraconserved enhancers. As consequences of this rearrangement, the patient-derived lymphoblastoid cell line shows abnormal activity of the ARX-KDM5C-SYN1 regulatory axis. Moreover, the three-dimensional (3D) structure of the Arx locus, both in mouse embryonic stem cells and cortical neurons, provides new insight for the functional consequences of ARX duplications. Finally, by comparing the clinical features of the 16 CNVs affecting the ARX locus, we conclude that-depending on the involvement of tissue-specific enhancers-the ARX duplications are ID-associated risk CNVs with variable expressivity and penetrance.


Genes, Homeobox , Intellectual Disability , Animals , Child , Homeodomain Proteins/genetics , Humans , Intellectual Disability/genetics , Male , Mice , Mutation , Transcription Factors/genetics , Transcription Factors/metabolism
6.
Life (Basel) ; 13(1)2022 Dec 21.
Article En | MEDLINE | ID: mdl-36675969

BACKGROUND: Turner syndrome is a rare genetic condition in which a female is partly or completely missing an X chromosome. Signs and symptoms vary among those affected. In fetuses that survive at birth and without congenital malformations, the prognosis is usually positive, but it has high lethality in utero, especially in the first trimester of pregnancy. METHODS: We report a case of monosomy X detected during a prenatal diagnosis for beta thalassemia on coelomic fluid (CF) at the VIII week of gestation. Beta globin gene analysis, whole genome amplification (WGA), quantitative fluorescent PCR and array comparative genomic hybridization (array-CGH) were performed on DNA extracted from CF. RESULTS: A monoallelic pattern of all Short Tandem Repeats mapped on the X chromosome was found and array-CGH performed on WGA from a few fetal erythroblasts confirmed monosomy X. CONCLUSION: This report underlines the importance of an early prenatal diagnosis and the countless potentialities of array-CGH that could make definition of molecular karyotype possible from a few fetal cells, unlike conventional cytogenetic techniques that require a greater cellular content. This is the first report of a molecular karyotype obtained from two cells selected by micromanipulation of CF and defined at such an early gestational age.

7.
Ital J Pediatr ; 46(1): 108, 2020 Jul 28.
Article En | MEDLINE | ID: mdl-32723361

BACKGROUND: Silver-Russell Syndrome (SRS) is a genetic disorder characterized by intrauterine and postnatal growth restriction and normal head circumference with consequent relative macrocephaly. Addictional findings are protruding forehead in early life, body asymmetry (of upper and lower limbs) and substantial feeding difficulties. Although several genetic mechanisms that cause the syndrome are known, more than 40% of patients with a SRS-like phenotype remain without an etiological diagnosis. In the last few years, different clinical reports have suggested that mutations or deletions of the HMGA2 gene can be responsible for a SRS-like phenotype in patients with negative results of the common diagnostic tests for this syndrome. CASE PRESENTATION: We present a 3-year-old male patient with clinical diagnosis of Silver-Russell Syndrome (SRS) associated with a de novo heterozygous deletion of the long arm of the chromosome 12 (12q14.3) encompassing the HMGA2 gene. CONCLUSIONS: Our report confirms the etiological role of HMGA2 as a disease gene in the development of a SRS-like phenotype.


Gene Deletion , HMGA2 Protein/genetics , Silver-Russell Syndrome/diagnosis , Silver-Russell Syndrome/genetics , Child, Preschool , Humans , Male , Phenotype , Silver-Russell Syndrome/complications
8.
Am J Med Genet A ; 167A(12): 3130-8, 2015 Dec.
Article En | MEDLINE | ID: mdl-26333487

The human chromosome 14q32 carries a cluster of imprinted genes which include the paternally expressed genes (PEGs) DLK1 and RTL1, as well as the maternally expressed genes (MEGs) MEG3, RTL1as, and MEG8. PEGs and MEGs expression at the 14q32.2-imprinted region are regulated by two differentially methylated regions (DMRs): the IG-DMR and the MEG3-DMR, which are respectively methylated on the paternal and unmethylated on the maternal chromosome 14 in most cells. Genetic and epigenetic abnormalities affecting these imprinted gene clusters result in two different phenotypes currently known as maternal upd(14) syndrome and paternal upd(14) syndrome. However, only few patients carrying a maternal deletion at the 14q32.2-imprinted critical region have been reported so far. Here we report on the first patient with a maternal de novo deletion of 160 kb at the 14q32.2 chromosome that does not involves the IG-DMR or the MEG3-DMR but elicits a full upd(14)pat syndrome's phenotype encompassing the three mentioned MEGs. By the analysis of this unique genotype-phenotype correlation, we further widen the spectrum of the congenital anomalies associated to this rare disorder and we propose that the paternally expressed imprinted RTL1 gene, as well as its maternally expressed RTL1as antisense transcript, may play a prominent causative role.


DNA Methylation , Genomic Imprinting , Sequence Deletion , Uniparental Disomy/genetics , Calcium-Binding Proteins , Chromosomes, Human, Pair 14/genetics , Comparative Genomic Hybridization , Female , Genotype , Humans , Infant, Newborn , Intercellular Signaling Peptides and Proteins/genetics , Membrane Proteins/genetics , Phenotype , Pregnancy Proteins/genetics , Prognosis , RNA, Long Noncoding/genetics , Syndrome , Uniparental Disomy/pathology
9.
Eur J Paediatr Neurol ; 19(4): 477-83, 2015 Jul.
Article En | MEDLINE | ID: mdl-25769226

BACKGROUND: Microscopically chromosome rearrangements of the short arm of chromosome 4 include the two known clinical entities: partial trisomy 4p and deletions of the Wolf-Hirschhorn critical regions 1 and 2 (WHSCR-1 and WHSCR-2, respectively), which cause cranio-facial anomalies, congenital malformations and developmental delay/intellectual disability. METHODS/RESULTS: We report on clinical findings detected in a Chinese patient with a de novo 4p16.1-p15.32 duplication in association with a subtle 4p terminal deletion of 6 Mb in size. This unusual chromosome imbalance resulted in WHS classical phenotype, while clinical manifestations of 4p trisomy were practically absent. CONCLUSION: This observation suggests the hypothesis that haploinsufficiency of sensitive dosage genes with regulatory function placed in WHS critical region, is more pathogenic than concomitant 4p duplicated segment. Additionally clinical findings in our patient confirm a variable penetrance of major malformations and neurological features in Chinese children despite of WHS critical region's deletion.


Chromosome Disorders/genetics , Trisomy/genetics , Wolf-Hirschhorn Syndrome/genetics , Asian People/genetics , Child, Preschool , Chromosome Deletion , Chromosomes, Human, Pair 4/genetics , Developmental Disabilities/genetics , Female , Genome, Human , Genotype , Humans , Oligonucleotide Array Sequence Analysis , Phenotype
...