Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Mater ; 35(45): e2305402, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37492940

RESUMEN

Gas nanobubbles are directly linked to many important chemical reactions. While they can be detrimental to operational devices, they also reflect the local activity at the nanoscale. Here, supercrystals made of highly monodisperse Ag@Pt core-shell nanoparticles are first grown onto a solid support and fully characterized by electron microscopies and X-ray scattering. Supercrystals are then used as a plasmonic photocatalytic platform for triggering the hydrogen evolution reaction. The catalytic activity is measured operando at the single supercrystal level by high-resolution optical microscopy, which allows gas nanobubble nucleation to be probed at the early stage with high temporal resolution and the amount of gas molecules trapped inside them to be quantified. Finally, a correlative microscopy approach and high-resolution electron energy loss spectroscopy help to decipher the mechanisms at the origin of the local degradation of the supercrystals during catalysis, namely nanoscale erosion and corrosion.

2.
Nanoscale ; 13(25): 11289-11297, 2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34156049

RESUMEN

Understanding of cobalt nanorods' (Co NRs) formation still remains challenging when it comes to enhancing their anisotropic properties applicable in magnetic or catalytic areas. Herein, we propose a mechanism for the morphological transition from spherical cobalt nanoparticles (NPs) to Co NRs over time (9 h) in a mixture of [CoCl(PPh3)3] and oleylamine (OAm). In the literature, we described how spherical Co NPs are synthesized via a disproportionation process. Based on in situ and pseudo in situ observations, two steps of this unique mechanism are characterized first by the dissolution of the spheres and then the regrowth in rods' shape in the presence of an OAm template. Furthermore, ex situ experiments show that these steps are the result of interdependent reactions occurring between Co NPs, cobalt(ii) and OAm. The latter plays numerous roles in this synthesis: as a surfactant, a disproportionation promoter, and a hydrogen source allowing the reduction of cobalt(ii) complexes; its ammonium salt derivative is involved in oxidative etching of Co NPs and it promotes the anisotropic growth in NRs. These coupling actions of reduction and etching generate two cobalt reservoirs of nuclei under thermodynamic conditions.

3.
ACS Nano ; 15(3): 4018-4033, 2021 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-32786209

RESUMEN

We report on the shape, composition (from Pt95Zn5 to Pt77Zn23), and surface chemistry of Pt-Zn nanoparticles obtained by reduction of precursors M2+(acac)2- (M2+: Pt2+ and Zn2+) in oleylamine, which serves as both solvent and ligand. We show first that the addition of phenyl ether or benzyl ether determines the composition and shape of the nanoparticles, which point to an adsorbate-controlled synthesis. The organic (ligand)/inorganic (nanoparticles) interface is characterized on the structural and chemical level. We observe that the particles, after washing with ethanol, are coated with oleylamine and the oxidation products of the latter, namely, an aldimine and a nitrile. After exposure to air, the particles oxidize, covering themselves with a few monolayer thick ZnO film, which is certainly discontinuous when the particles are low in zinc. Pt-Zn particles are unstable and prone to losing Zn. We have strong indications that the driving force is the preferential oxidation of the less noble metal. Finally, we show that adsorption of CO on the surface of nanoparticles modifies the oxidation state of amine ligands and attribute it to the displacement of hydrogen adsorbed on Pt. All the structural and chemical information provided by the combination of electron microscopy and X-ray photoelectron spectroscopy allows us to give a fairly accurate picture of the surface of nanoparticles and to better understand why Pt-Zn alloys are efficient in certain electrocatalytic reactions such as the oxidation of methanol.

4.
Front Chem ; 7: 830, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31850318

RESUMEN

The binary assembly DDA-{Mo132}/OA-γ-Fe2O3 (DDA = didodecyldimethylammonium, {Mo132} = [Mo132O372(CH3COO)30(H2O)72]42-, OA = oleic acid) constitutes one of the two examples in the literature of binary superlattices made of a mixing of nanocrystals and oxo-clusters. In a precedent work, we reported in details the preparation of such magnetic binary systems and studied the effect of the nature of the polyoxometalates (POMs) on the magnetic properties. In the present paper, we study the stability of this model binary assembly under heating at various temperatures. Indeed, especially if magnetic and/or transport properties are targeted, an annealing can be essential to change the phase of the nanocrystals in a more magnetic one and/or to desorb the organic capping of the nano-objects that can constitute an obstacle to the electronic communication between the nano-objects. We gave evidence that the maghemite organization in the binary assembly is maintained until 370°C under vacuum thanks to the presence of the POMs. This latter evolve in the phase MoO3, but still permits to avoid the aggregation of the nanocrystals as well as preserve their periodical arrangement. On the contrary, an assembly made of pure γ-Fe2O3 nanocrystals displays a clear aggregation of the nano-objects from 370°C, as attested by transmission and scanning electronic microscopies and confirmed by magnetic measurements. The stability of the magnetic nanocrystals in such POMs/nanocrystals assemblies opens the way to (i) the elaboration of new binary assemblies from POMs and numerous kinds of nanocrystals with a good control on the magnetic properties and to (ii) the investigation of new physical properties as exchange coupling, or magneto-transport in such systems.

5.
Langmuir ; 33(44): 12759-12765, 2017 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-29028348

RESUMEN

We propose a novel approach to trap 2 nm Pt nanocrystals using nanoporous two-dimensional supramolecular networks for cavity-confined host-guest recognition process. This will be achieved by taking advantage of two features of supramolecular self-assembly at surfaces: First, its capability to allow the formation of complex 2D architectures, more particularly, nanoporous networks, through noncovalent interactions between organic molecular building-blocks; second, the ability of the nanopores to selectively host and immobilize a large variety of guest species. In this paper, for the first time, we will use isotropic honeycomb networks and anisotropic linear porous supramolecular networks to host 2 nm Pt nanocrystals.

6.
Small ; 12(2): 220-8, 2016 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-26578032

RESUMEN

In the present article, the successful coassembly of spherical 6.2 nm maghemite (γ-Fe2O3) nanocrystals and giant polyoxometalates (POMs) such as 2.9 nm {Mo132} is demonstrated. To do so, colloidal solutions of oleic acid-capped γ-Fe2O3 and long-chain alkylammonium-encapsulated {Mo132 } dispersed in chloroform are mixed together and supported self-organized binary superlattices are obtained upon the solvent evaporation on immersed substrates. Both electronic microscopy and small angles X-ray scattering data reveal an AB-type structure and an enhanced structuration of the magnetic nanocrystals (MNCs) assembly with POMs in octahedral interstices. Therefore, {Mo132} acts as an efficient binder constituent for improving the nanocrystals ordering in 3D films. Interestingly, in the case of didodecyldimethylammonium (C12)-encapsulated POMs, the long-range ordered binary assemblies are obtained while preserving the nanocrystals magnetic properties due to weak POMs-MNCs interactions. On the other hand, POMs of larger effective diameter can be employed as spacer blocks for MNCs as shown by using {Mo132} capped with dioctadecyldimethylammonium (C18) displaying longer chains. In that case, it is shown that POMs can also be used for fine-tuning the dipolar interactions in γ-Fe2O3 nanocrystal assemblies.

7.
Faraday Discuss ; 181: 19-36, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25925553

RESUMEN

Platinum nanocrystals and their derivatives with palladium and cobalt are of fundamental interest due to their wide field of application in chemistry and physics. Their properties are strongly dependent on their shape and composition. However the chemical route is far from allowing control of both shape and composition. In this paper, we show both experimentally and theoretically the important role of the interaction of small adsorbed molecules on the shape but also on the composition. This has been studied by comparing the case of pure palladium and platinum nanocrystals and the case of PtPd and PtCo nanoalloys synthesized by the liquid-liquid phase transfer method.


Asunto(s)
Aleaciones , Platino (Metal)/química , Cinética , Microscopía Electrónica de Transmisión , Nanopartículas
8.
Phys Chem Chem Phys ; 17(42): 28162-70, 2015 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-25805247

RESUMEN

Co(x)Pt(100-x) nanoalloys have been synthesized by two different chemical processes either at high or at low temperature. Their physical properties and the order/disorder phase transition induced by annealing have been investigated depending on the route of synthesis. It is demonstrated that the chemical synthesis at high temperature allows stabilization of the fcc structure of the native nanoalloys while the soft chemical approach yields mainly poly or non crystalline structure. As a result the approach of the order/disorder phase transition is strongly modified as observed by high-resolution transmission electron microscopy (HR-TEM) studies performed during in situ annealing of the different nanoalloys. The control of the nanocrystallinity leads to significant decrease in the chemical ordering temperature as the ordered structure is observed at temperatures as low as 420 °C. This in turn preserves the individual nanocrystals and prevents their coalescence usually observed during the annealing necessary for the transition to an ordered phase.

9.
Dalton Trans ; 43(48): 18025-34, 2014 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-25352309

RESUMEN

The aim of this work was to investigate the synthesis of tin nanoparticles (NPs) or tin/carbon composites, in room temperature ionic liquids (RTILs), that could be used as structured anode materials for Li-ion batteries. An innovative route for the synthesis of Sn nanoparticles in such media is successfully developed. Compositions, structures, sizes and morphologies of NPs were characterized by high-energy X-ray diffraction (HEXRD), X-ray photoelectron spectroscopy (XPS) and high-resolution transmission electron microscopy (HRTEM). Our findings indicated that (i) metallic tetragonal ß-Sn was obtained and (ii) the particle size could be tailored by tuning the nature of the RTILs, leading to nano-sized spherical particles with a diameter ranging from 3 to 10 nm depending on synthesis conditions. In order to investigate carbon composite materials for Li-ion batteries, Sn nanoparticles were successfully deposited on the surface of multi-wall carbon nanotubes (MWCNT). Moreover, electrochemical properties have been studied in relation to a structural study of the nanocomposites. The poor electrochemical performances as a negative electrode in Li-ion batteries is due to a significant amount of RTIL trapped within the pores of the nanotubes as revealed by XPS investigations. This dramatically affected the gravimetric capacity of the composites and limited the diffusion of lithium. The findings of this work however offer valuable insights into the exciting possibilities for synthesis of novel nano-sized particles and/or alloys (e.g. Sn-Cu, Sn-Co, Sn-Ni, etc.) and the importance of carbon morphology in metal pulverization during the alloying/dealloying process as well as prevention of ionic liquid trapping.

10.
Langmuir ; 28(10): 4835-41, 2012 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-22352459

RESUMEN

Palladium and platinum nanocrystals are synthesized by the liquid-liquid phase transfer method, which is a suitable way to produce anisotropic metallic nanoparticles and control their shape at the nanoscopic scale. The process leading to shape control is, however, quite complex as all the physical and chemical parameters could play an important role. In this paper, we have demonstrated the primordial role of the dissolved gases (O(2), H(2), N(2)) in the solvent medium on the nanomorphology of platinum and palladium nanocrystals. In particular, it shows the specific role of H(2) in the formation of platinum nanocubes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...