Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biomol Struct Dyn ; 35(13): 2759-2771, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27659686

RESUMEN

Screening large-scale ENCODE data of 625 cytoplasmic transfer RNA (tRNAs) and 37 aminoacyl tRNA synthetase (AARSs) human genes, we deconstruct the array of relations between 10 histone marks affecting 15 chromatin states; their tissue specificity and variations and interchange amongst normal, cancerous and stem cells. The histone marks of RNA Pol II transcribed AARS genes share, but also contrast with that on RNA Pol III transcribed tRNA genes. tRNAs with identical/similar sequences may be in significantly varying states even within the same cell line; the chromatin scaffold, where the tRNA gene resides, is the key determinant. Hepatocellular carcinoma cell line has dominant H3K27me3, and singular clustering of other marks. Leukaemic cell line has hyperactive genes. The quiescence of the stem cells is encoded in the markers. Leaving aside the important exceptions in stem cells and elsewhere, tRNAs with cove scores above 50 have active markers and precise sets of transcription factors, and are usually well conserved compared to the low-scoring ones. Pseudo tRNAs are in heterochromatin/repressed state with anomalous exceptions in cancer cells. We motivate that Epigenetic-Phishing hacks the translation apparatus through the chromatin states governed by the histone marks of tRNA and AARS genes, and speculate on their therapeutic implications in cancer and on stem cells.


Asunto(s)
Aminoacil-ARNt Sintetasas/genética , Biomarcadores de Tumor/genética , Epigénesis Genética/genética , ARN de Transferencia/genética , Carcinoma Hepatocelular/genética , Línea Celular Tumoral , Cromatina/genética , Células HeLa , Células Hep G2 , Células Endoteliales de la Vena Umbilical Humana , Humanos , Células K562 , Neoplasias Hepáticas/genética , ARN Polimerasa II/genética , Factores de Transcripción/genética , Transcripción Genética/genética
2.
J Biomol Struct Dyn ; 33(12): 2721-37, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25692737

RESUMEN

tRNAs are widely believed to segregate into two classes, I and II. Computational analysis of eukaryotic tRNA entries in Genomic tRNA Database, however, leads to new, albeit paradoxical, presence of more than a thousand class-I tRNAs with uncharacteristic long variable arms (V-arms), like in class-II. Out of 62,202 tRNAs from 69 eukaryotes, as many as 1431 class-I tRNAs have these novel extended V-arms, and we refer to them as paradoxical tRNAs (pxtRNAs). A great majority of these 1431 pxtRNA genes are located in intergenic regions, about 18% embedded in introns of genes or ESTs, and just one in 3'UTR. A check on the conservations of 2D and 3D base pairs for each position of these pxtRNAs reveals a few variations, but they seem to have almost all the known features (already known identity and conserved elements of tRNA). Analyses of the A-Box and B-Box of these pxtRNA genes in eukaryotes display salient deviations from the previously annotated conserved features of the standard promoters, whereas the transcription termination signals are just canonical and non-canonical runs of thymidine, similar to the ones in standard tRNA genes. There is just one such pxtRNA(ProAGG) gene in the entire human genome, and the availability of data allows epigenetic analysis of this human pxtRNA(ProAGG) in three different cell lines, H1 hESC, K562, and NHEK, to assess the level of its expression. Histone acetylation and methylation of this lone pxtRNA(ProAGG) gene in human differ from that of the nine standard human tRNA(ProAGG) genes. The V-arm nucleotide sequences and their secondary structures in pxtRNA differ from that of class-II tRNA. Considering these differences, hypotheses of alternative splicing, non-canonical intron and gene transfer are examined to partially improve the Cove scores of these pxtRNAs and to critically question their antecedence and novelty.


Asunto(s)
ADN Intergénico/genética , Eucariontes/genética , Intrones/genética , ARN de Transferencia/genética , Secuencia de Bases , Línea Celular , Simulación por Computador , Epigénesis Genética , Eucariontes/clasificación , Evolución Molecular , Regulación de la Expresión Génica , Variación Genética , Humanos , Células K562 , Modelos Moleculares , Conformación de Ácido Nucleico , Filogenia , Regiones Promotoras Genéticas/genética , ARN de Transferencia/química , ARN de Transferencia/clasificación , Transcripción Genética
3.
J Biomol Struct Dyn ; 33(10): 2104-20, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25581620

RESUMEN

During translation, aminoacyl-tRNA synthetases recognize the identities of the tRNAs to charge them with their respective amino acids. The conserved identities of 58,244 eukaryotic tRNAs of 24 invertebrates and 45 vertebrates in genomic tRNA database were analyzed and their novel features extracted. The internal promoter sequences, namely, A-Box and B-Box, were investigated and evidence gathered that the intervention of optional nucleotides at 17a and 17b correlated with the optimal length of the A-Box. The presence of canonical transcription terminator sequences at the immediate vicinity of tRNA genes was ventured. Even though non-canonical introns had been reported in red alga, green alga, and nucleomorph so far, fairly motivating evidence of their existence emerged in tRNA genes of other eukaryotes. Non-canonical introns were seen to interfere with the internal promoters in two cases, questioning their transcription fidelity. In a first of its kind, phylogenetic constructs based on tRNA molecules delineated and built the trees of the vast and diverse invertebrates and vertebrates. Finally, two tRNA models representing the invertebrates and the vertebrates were drawn, by isolating the dominant consensus in the positional fluctuations of nucleotide compositions.


Asunto(s)
Aminoacil-ARNt Sintetasas/química , Hongos/genética , Invertebrados/genética , Plantas/genética , ARN de Transferencia/química , Vertebrados/genética , Aminoacil-ARNt Sintetasas/genética , Animales , Secuencia de Bases , Sitios de Unión , Bases de Datos Genéticas , Evolución Molecular , Hongos/clasificación , Invertebrados/clasificación , Modelos Biológicos , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Filogenia , Plantas/clasificación , Regiones Promotoras Genéticas , Unión Proteica , ARN de Transferencia/genética , Alineación de Secuencia , Transcripción Genética , Vertebrados/clasificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA