Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 9 de 9
1.
Int J Biol Macromol ; 264(Pt 1): 130445, 2024 Apr.
Article En | MEDLINE | ID: mdl-38423441

Biopolymer-derived polyelectrolyte complexes (PECs) are a class of materials that have emerged as promising candidates for developing advanced electrochemical sensors due to their tunable properties, biocompatibility, cost-effective production, and high surface area. PECs are formed by combining positively and negatively charged polymers, resulting in a network with intriguing properties that can be tailored for specific sensing applications. The resultant PECs-based nanocomposites were used to modify the glassy carbon electrode (GCE) to detect the sulfamethazine (SFZ) antibiotic drug. In addition, electrochemical studies using electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and differential pulse voltammetry (DPV) are used to evaluate the SFZ detection ability. Similarly, various microscopic and spectroscopic studies investigated the nano composite's structural features and morphological behavior. The κ-CGN/P(Am-co-DMDAAc)-GO modified GCE demonstrated excellent detection ability of SFZ with the nano molar range and without interference with similar structural components. Furthermore, the newly fabricated electrode κ-CGN/P(Am-co-DMDAAc)-GO was derived from naturally available materials, water-soluble, low cost, biocompatible, exhibits good conductivity, and excellent catalytic properties. Finally, κ-CGN/P(Am-co-DMDAAc)-GO- modified GCE has versatile, practical applications for detecting SFZ in real-time samples and determining the efficacy of an antibacterial activity.


Electrochemical Techniques , Sulfamethazine , Polyelectrolytes , Carrageenan , Electrochemical Techniques/methods , Anti-Bacterial Agents/pharmacology , Carbon/chemistry
2.
J Colloid Interface Sci ; 660: 215-225, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38244490

Hierarchical nanostructures have harvested noteworthy attention lately owing to their remarkable capabilities in the fields of energy storing and transformation, catalysis, and electrical devices. We established an effort less and template-free synthetic method to create hierarchical hetero nanostructures of Zn2V2O7, taking into account the benefits of hierarchical nanostructures, we investigated the performance of HNs (Hierarchical Nanostructures) as electrochemical supercapacitors. Electrochemical tests were tested in a 6 M KOH solution to assess their capabilities. The Zn2V2O7 electrode's measured specific capacitance was 750F/g at 1 A/g, with outstanding stability and an excellent retention capacity of 85 % later 5000 cycles in three- electrode electrochemical cells. Asymmetric device such as Zn2V2O7//AC provides a specific capacitance of 76.8F/g at 1 A/g with energy and power densities of 27.3 Wh kg-1 and 800 W kg-1 respectively. The device withstands 85 % of its initial capacity after 5000 continuous GCD cycles at 10 A/g. The outstanding performance observed clearly demonstrates the significant potential and practical utility of Zn2V2O7 in the realm of more efficient energy storage applications.

3.
Nanomaterials (Basel) ; 12(9)2022 Apr 29.
Article En | MEDLINE | ID: mdl-35564227

Supercapacitors (SCs), also known as ultracapacitors, should be one of the most promising contenders for meeting the needs of human viable growth owing to their advantages: for example, excellent capacitance and rate efficiency, extended durability, and cheap materials price. Supercapacitor research on electrode materials is significant because it plays a vital part in the performance of SCs. Polyaniline (PANI) is an exceptional candidate for energy-storage applications owing to its tunable structure, multiple oxidation/reduction reactions, cheap price, environmental stability, and ease of handling. With their exceptional morphology, suitable functional linkers, metal sites, and high specific surface area, metal-organic frameworks (MOFs) are outstanding materials for electrodes fabrication in electrochemical energy storage systems. The combination of PANI and MOF (PANI/MOF composites) as electrode materials demonstrates additional benefits, which are worthy of exploration. The positive impacts of the two various electrode materials can improve the resultant electrochemical performances. Recently, these kinds of conducting polymers with MOFs composites are predicted to become the next-generation electrode materials for the development of efficient and well-organized SCs. The recent achievements in the use of PANI/MOFs-based electrode materials for supercapacitor applications are critically reviewed in this paper. Furthermore, we discuss the existing issues with PANI/MOF composites and their analogues in the field of supercapacitor electrodes in addition to potential future improvements.

4.
J Colloid Interface Sci ; 609: 434-446, 2022 Mar.
Article En | MEDLINE | ID: mdl-34929580

In this research literature, a tungsten disulfide/iron cobaltite (WS2/FeCo2O4) interwoven construction array was prepared by a simplistic hydrothermal approach on Ni foam as an integrative electrode for supercapacitors (SCs). For characterization of the wearing of WS2 nanostructure on FeCo2O4 nanosheets (WS2/FeCo2O4) by the Scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The WS2/FeCo2O4 nanosheets supply a larger surface region and sufficient space to allow for volume changes. Moreover, considerable features of wellbeing conductivity from the Ni foam conductor and the synergistic procedures between WS2 and FeCo2O4, the integrated WS2/FeCo2O4 composite achieved prominent SCs storage performances with a higher specific capacity of 1122C g-1 (2492.9F g-1) at 1 A g-1 and notable capacity retention of 98.1% at 3 A g-1 after 5000 long cycles and retained higher rate capacity of 951.9 C g-1 at 15 A g-1. For practical application, an asymmetric supercapacitors type WS2/FeCo2O4//active carbon (WS2/FeCo2O4//AC) device was successfully prepared. The WS2/FeCo2O4//AC device displays a higher specific capacity of 110C g-1 and energy density of 85.68 W h kg-1 at power density at 897.65 W kg-1, as well as the superior initial capacitance of 98.7% with cyclic stabilities after 4000 long cycles. Thus, these results indicated the great potential of the constructed WS2/FeCo2O4//AC in the scenario electrochemical properties due to their outstanding energy storage activities.

5.
Nanomaterials (Basel) ; 11(5)2021 May 07.
Article En | MEDLINE | ID: mdl-34066997

Mixed ferrite nanoparticles with compositions CoxMn1-xFe2O4 (x = 0, 0.2, 0.4, 0.6, 0.8, and 1.0) were synthesized by a simple chemical co-precipitation method. The structure and morphology of the nanoparticles were obtained by X-ray diffraction (XRD), transmission electron microscope (TEM), Raman spectroscopy, and Mössbauer spectroscopy. The average crystallite sizes decreased with increasing x, starting with 34.9 ± 0.6 nm for MnFe2O4 (x = 0) and ending with 15.0 ± 0.3 nm for CoFe2O4 (x = 1.0). TEM images show an edge morphology with the majority of the particles having cubic geometry and wide size distributions. The mixed ferrite and CoFe2O4 nanoparticles have an inverse spinel structure indicated by the splitting of A1g peak at around 620 cm-1 in Raman spectra. The intensity ratios of the A1g(1) and A1g(2) peaks indicate significant redistribution of Co2+ and Fe3+ cations among tetrahedral and octahedral sites in the mixed ferrite nanoparticles. Magnetic hysterics loops show that all the particles possess significant remnant magnetization and coercivity at room temperature. The mass-normalized saturation magnetization is highest for the composition with x = 0.8 (67.63 emu/g), while CoFe2O4 has a value of 65.19 emu/g. The nanoparticles were PEG (poly ethylene glycol) coated and examined for the magneto thermic heating ability using alternating magnetic field. Heating profiles with frequencies of 333.45, 349.20, 390.15, 491.10, 634.45, and 765.95 kHz and 200, 250, 300, and 350 G field amplitudes were obtained. The composition with x = 0.2 (Co0.2Mn0.8Fe2O4) with saturation magnetization 57.41 emu/g shows the highest specific absorption rate (SAR) value of 190.61 W/g for 10 mg/mL water dispersions at a frequency of 765.95 kHz and 350 G field strength. The SAR values for the mixed ferrite and CoFe2O4 nanoparticles increase with increasing concentration of particle dispersions, whereas for MnFe2O4, nanoparticles decrease with increasing the concentration of particle dispersions. SARs obtained for Co0.2Mn0.8Fe2O4 and CoFe2O4 nanoparticles fixed in agar ferrogel dispersions at frequency of 765.95 kHz and 350 G field strength are 140.35 and 67.60 W/g, respectively. This study shows the importance of optimizing the occupancy of Co2+ among tetrahedral and octahedral sites of the spinel system, concentration of the magnetic nanoparticle dispersions, and viscosity of the surrounding medium on the magnetic properties and heating efficiencies.

6.
Nanomaterials (Basel) ; 11(6)2021 May 28.
Article En | MEDLINE | ID: mdl-34071387

Over the past few decades, the application of new novel materials in energy storage system has seen excellent development. We report a novel MnCo2O4/NiO nanostructure prepared by a simplistic chemical bath deposition method and employed it as a binder free electrode in the supercapacitor. The synergistic attraction from a high density of active sites, better transportation of ion diffusion and super-most electrical transportation, which deliver boost electrochemical activities. X-ray diffraction, field-emission scanning electron microscopy, and X-ray photoelectron spectroscopy have been used to investigate the crystallinity, morphology, and elemental composition of the as-synthesized precursors, respectively. Cyclic voltammetry, galvanostatic charge/discharge, and electron impedance spectroscopy have been employed to investigate the electrochemical properties. The unique nanoparticle structures delivered additional well-organized pathways for the swift mobility of electrons and ions. The as-prepared binder-free MnCo2O4/NiO nanocomposite electrode has a high specific capacity of 453.3 C g-1 at 1 Ag-1, and an excellent cycling reliability of 91.89 percent even after 4000 cycles, which are significantly higher than bare MnCo2O4 and NiO electrodes. Finally, these results disclose that the as-fabricated MnCo2O4/NiO electrode could be a favored-like electrode material holds substantial potential and supreme option for efficient supercapacitor and their energy storage-related applications.

7.
Molecules ; 26(4)2021 Feb 04.
Article En | MEDLINE | ID: mdl-33557107

Magnetite (Fe3O4) nanoparticles were synthesized using the chemical coprecipitation method. Several nanoparticle samples were synthesized by varying the concentration of iron salt precursors in the solution for the synthesis. Two batches of nanoparticles with average sizes of 10.2 nm and 12.2 nm with nearly similar particle-size distributions were investigated. The average particle sizes were determined from the XRD patterns and TEM images. For each batch, several samples with different particle concentrations were prepared. Morphological analysis of the samples was performed using TEM. The phase and structure of the particles of each batch were studied using XRD, selected area electron diffraction (SAED), Raman and XPS spectroscopy. Magnetic hysteresis loops were obtained using a Lakeshore vibrating sample magnetometer (VSM) at room temperature. In the two batches, the particles were found to be of the same pure crystalline phase of magnetite. The effects of particle size, size distribution, and concentration on the magnetic properties and magneto thermic efficiency were investigated. Heating profiles, under an alternating magnetic field, were obtained for the two batches of nanoparticles with frequencies 765.85, 634.45, 491.10, 390.25, 349.20, 306.65, and 166.00 kHz and field amplitudes of 100, 200, 250, 300 and 350 G. The specific absorption rate (SAR) values for the particles of size 12.2 nm are higher than those for the particles of size 10.2 nm at all concentrations and field parameters. SAR decreases with the increase of particle concentration. SAR obtained for all the particle concentrations of the two batches increases almost linearly with the field frequency (at fixed field strength) and nonlinearly with the field amplitude (at fixed field frequency). SAR value obtained for magnetite nanoparticles with the highest magnetization is 145.84 W/g at 765.85 kHz and 350 G, whereas the SAR value of the particles with the least magnetization is 81.67 W/g at the same field and frequency.


Magnetite Nanoparticles/chemistry , Particle Size , Temperature
8.
RSC Adv ; 9(65): 38047-38054, 2019 Nov 19.
Article En | MEDLINE | ID: mdl-35541786

Quantum dot sensitized solar cell (QDSSC) performance is primarily limited by the recombination of charges at the interfaces of TiO2/quantum dot (QD) sensitizer/electrolyte. Hence, blocking or suppressing the charge recombination is an essential requirement to elevate the QDSSC performance to the next level. To retard the charge recombination, herein, we propose the introduction of a SnO2 nanograss (NG) interlayer on the surface of TiO2 using the facile chemical bath deposition method. The SnO2 NG interlayer not only inhibits the interfacial recombination processes in QDSSCs but also enhances the light-harvesting capability in generating more excitons. Hence, the TiO2/SnO2 NG/CdS QDSSCs can achieve the power conversion efficiency of 3.15%, which is superior to that of a TiO2/CdS device (2.16%). Electrochemical impedance spectroscopy, open-circuit voltage decay and dark current analyses confirm that the recombination of charges at the photoanode/electrolyte interface is suppressed and the life time is improved by introducing the SnO2 NG interlayer between the TiO2 and CdS QD sensitizer.

9.
Mikrochim Acta ; 185(6): 282, 2018 05 05.
Article En | MEDLINE | ID: mdl-29730768

Porous carbon nanofibers codoped with nitrogen and sulfur (NFs) were prepared by pyrolysis of trithiocyanuric acid, silica nanospheres and polyacrylonitrile (PAN) followed by electrospinning. The NFs were used to modify a glassy carbon electrode (GCE) which then displayed highly sensitive response to traces of Cd(II). Compared to a bare GCE and a Nafion modified GCE, the GCE modified with codoped NFs shows improved sensitivity for Cd(II) in differential pulse anodic sweep voltammetry. The stripping peak current (typically measured at 0.81 V vs. Ag/AgCl) increases linearly in the 2.0-500 µg·L-1 Cd(II) concentration range. This is attributed to the large surface area (109 m2·g-1), porous structure, and high fraction of heteroatoms (19 at.% of N and 0.75 at.% of S). The method was applied to the determination of Cd(II) in (spiked) tap water where it gave recoveries that ranged between 96% and 103%. Graphical abstract Schematic of a glassy carbon electrode (GCE) modified with N- and S-codoped porous carbon nanofibers (N,S-PCNFs). This GCE has good selectivity for cadmium ion (Cd2+) which can be determined by differential pulse anodic sweeping voltammetry (DPASV) with a detection limit as low as 0.7 ng·mL-1.

...