Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Headache Pain ; 21(1): 83, 2020 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-32615921

RESUMEN

BACKGROUND: Purine receptors play roles in peripheral and central sensitization and are associated with migraine headache. We investigated the possibility that ATP plays a permissive role in the activation of AMPA receptors thus inducing Glu release from nerve terminals isolated from the rat trigeminal caudal nucleus (TCN). METHODS: Nerve endings isolated from the rat TCN were loaded with [3H]D-aspartic acid ([3H]D-ASP), layered into thermostated superfusion chambers, and perfused continuously with physiological medium, alone or with various test drugs. Radioactivity was measured to assess [3H]D-ASP release under different experimental conditions. RESULTS: Synaptosomal [3H]D-ASP spontaneous release was stimulated by ATP and to an even greater extent by the ATP analogue benzoylbenzoylATP (BzATP). The stimulation of [3H]D-ASP basal release by the purinergic agonists was prevented by the selective P2X7 receptor antagonist A438079. AMPA had no effect on basal [3H]D-ASP release, but the release observed when synaptosomes were exposed to AMPA plus a purinoceptor agonist exceeded that observed with ATP or BzATP alone. The selective AMPA receptor antagonist NBQX blocked this "excess" release. Co-exposure to AMPA and BzATP, each at a concentration with no release-stimulating effects, evoked a significant increase in [3H]D-ASP basal release, which was prevented by exposure to a selective AMPA antagonist. CONCLUSIONS: P2X7 receptors expressed on glutamatergic nerve terminals in the rat TCN can mediate Glu release directly and indirectly by facilitating the activation of presynaptic AMPA receptors. The high level of glial ATP that occurs during chronic pain states can promote widespread release of Glu as well as can increase the function of AMPA receptors. In this manner, ATP contributes to the AMPA receptor activation involved in the onset and maintenance of the central sensitization associated with chronic pain.


Asunto(s)
Terminaciones Nerviosas/efectos de los fármacos , Terminaciones Nerviosas/metabolismo , Receptores AMPA/metabolismo , Receptores Presinapticos/metabolismo , Receptores Purinérgicos P2X7/fisiología , Núcleo Caudal del Trigémino/metabolismo , Animales , Antagonistas de Aminoácidos Excitadores/farmacología , Masculino , Agonistas del Receptor Purinérgico P2X , Antagonistas del Receptor Purinérgico P2X/farmacología , Ratas , Transmisión Sináptica , Sinaptosomas/efectos de los fármacos , Sinaptosomas/metabolismo
2.
Neurochem Int ; 90: 166-72, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26277383

RESUMEN

In this study, we demonstrate the existence on trigeminal caudal nucleus (TCN) glutamatergic terminals of α4ß2 nicotinic receptors (nAChRs) capable of enhancing the terminals' spontaneous release of [(3)H]d-aspartate ([(3)H]D-Asp). In rat TCN synaptosomes, spontaneous [(3)H]D-Asp release was increased by nicotine and the nicotinic receptor agonists (±)epibatidine and RJR2403. The increase was potentiated by the positive allosteric modulator of nAChRs LY2087101, inhibited by the nicotinic antagonists mecamylamine (MEC) and dihydro-ß-erythroidine hydrobromide (DHßE), and unaffected by α-bungarotoxin (α-BgTx) and methyllycaconitine (MLA). Evidence of functional interaction was observed between the α4ß2 nAChRs and cyclothiazide-sensitive, alfa-amino-3-hydroxy-5-methyl-4-isoxazolone propionate (AMPA) receptors co-localized on the TCN synaptosomes. Brief pre-exposure of synaptosomes to 30 µM nicotine or 10 µM RJR2403 abolished the AMPA (100 µM) -induced potentiation of [K(+)]e-evoked [(3)H]D-Asp release, an effect that seems to be caused by nicotine-induced increases in the internalization of AMPA receptors. Indeed, the effects of nicotine-pretreatment were not seen in synaptosomes containing pre-entrapped pep2-SVKI, a peptide known to compete for the binding of GluA2 subunit to scaffolding proteins involved in AMPA endocytosis, while entrapment of pep2-SVKE, an inactive peptide used as negative control, was inefficacious. These findings show that nicotine can negatively modulate the function of AMPA receptors present on glutamatergic nerve terminals in the rat TCN. Dynamic control of AMPA receptors by the nicotinic cholinergic system has been observed under other experimental conditions, and it can contribute to the control of synaptic plasticity such as long-term depression and potentiation. Nicotine's ability to reduce the functionality of presynaptic AMPA receptors could contribute to its analgesic effects by diminishing glutamatergic transmission from the primary afferent terminals that convey nociceptive input to TCN.


Asunto(s)
Terminaciones Nerviosas/efectos de los fármacos , Agonistas Nicotínicos/farmacología , Terminales Presinápticos/efectos de los fármacos , Receptores AMPA/efectos de los fármacos , Receptores Nicotínicos/metabolismo , Receptores Presinapticos/metabolismo , Animales , Masculino , Terminaciones Nerviosas/metabolismo , Nicotina/farmacología , Ratas Wistar , Receptores AMPA/metabolismo , Receptores Nicotínicos/efectos de los fármacos , Receptores Presinapticos/efectos de los fármacos , Núcleo Caudal del Trigémino/metabolismo
3.
Neurochem Res ; 39(5): 901-10, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24667981

RESUMEN

Large conductance, calcium-activated potassium channels [big potassium (BK) channel] consist of a tetramer of pore-forming α-subunit and distinct accessory ß-subunits (ß1-4) that modify the channel's properties. In this study, we analyzed the effects of BK channel activators and blockers on glutamate and γ-aminobutyric acid (GABA) release from synaptosomes isolated from the cerebral cortices or trigeminal caudal nuclei (TCN) of rats. Real-time polymerase chain reaction was used to characterize BK channel α and ß(1-4) subunit expression in the cortex and in the trigeminal ganglia (TG), whose neurons project primary terminal afferents into the TCN. Immunocytochemistry was used to localize these subunits on cortical and TCN synaptosomes. The BK channels regulating [(3)H]D-aspartate release from primary afferent nerve terminals projecting into the TCN displayed limited sensitivity to iberiotoxin, whereas those expressed on cortical synaptosomes were highly sensitive to this toxin. BK channels did not appear to be present on GABAergic nerve terminals from the TCN since [(3)H]-γ-aminobutyric acid release in this model was unaffected by BK channel activators or blockers. Gene expression studies revealed expression levels of the α subunit in the TG that were only 31.2 ± 2.1% of those found in cortical tissues. The ß4 subunit was the accessory subunit expressed most abundantly in both the cortex and TG. Levels of ß1 and ß2 were low in both these areas although ß2 expression in the TG was higher than that found in the cortex. Immunocytochemistry experiments showed that co-localization of α and ß4 subunits (the accessory subunit most abundantly expressed in both brain areas) was more common in TCN synaptosomes than in cortical synaptosomes. On the basis of these findings, it is reasonable to hypothesize that BK channels expressed on glutamatergic terminals in the TCN and cortex have distinct pharmacological profiles, which probably reflect different α and ß subunit combinations. Channels in the cortex seem to be composed mainly of α subunits and to a lesser degree by α and ß4 subunits, whereas in the TG the α + ß4 combination seems to prevail (although α and/or α + ß2 channels cannot be excluded). In light of the BK channels' selective control of excitatory transmission and their pharmacological diversity, their effects on primary glutamatergic afferents projecting to TCN represent a potential target for drug therapy of migraines and other types of orofacial pain.


Asunto(s)
Corteza Cerebral/metabolismo , Ácido Glutámico/metabolismo , Canales de Potasio de Gran Conductancia Activados por el Calcio/biosíntesis , Núcleo Caudal del Trigémino/metabolismo , Animales , Ácido Aspártico/metabolismo , Bencimidazoles/farmacología , Indoles/farmacología , Canales de Potasio de Gran Conductancia Activados por el Calcio/efectos de los fármacos , Canales de Potasio de Gran Conductancia Activados por el Calcio/fisiología , Masculino , Péptidos/farmacología , Subunidades de Proteína/metabolismo , Ratas Wistar , Sinaptosomas/metabolismo , Ácido gamma-Aminobutírico/metabolismo
4.
J Neural Transm (Vienna) ; 120(12): 1641-9, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23821368

RESUMEN

Interaction between different transmitter receptor systems is an emerging feature of neurotransmission at central synapses. G protein-coupled receptors' ability to form dimers or larger hetero-oligomers probably serves to facilitate the integration of diverse signals within the cell. We found that, in nerve terminals isolated from the cerebral cortices of rats, co-application of the GABAB agonist, baclofen, and of the non-selective mGlu agonist, L-CCG-I, potentiates the basal and depolarization-evoked release of [(3)H]GABA via a mechanism that involves mobilization of intracellular Ca(2+) ions. The effect of L-CCG-I + baclofen was abolished by the phospholipase C inhibitor U73122, reduced by Xestospongin C (an IP3 receptor blocker), and blocked by 2-APB, an IP3 receptor antagonist. Pretreatment of the synaptosomes with the lipid-soluble Ca(2+) chelator BAPTA-AM also inhibited the effects of L-CCG-I + baclofen. Subtype-selective non-competitive group I mGlu receptor antagonists, MPEP and CPCCOEt, had no effect on the release enhancement produced by baclofen + L-CCG-I. The enhancement was reversed by the GABAB receptor antagonist, CGP54626, and by the group I/group II mGlu receptor antagonist (R,S)-MCPG. The GABA release-enhancing effects of L-CCG-I + baclofen in our model might reflect the presence on cortical nerve endings of GABAB/group I mGlu receptor heteromers with pharmacological properties distinct from those of the component receptors. Activation of these heteromeric receptors might modify the function of the GABAB receptor in such a way that it facilitates GABAergic transmission, an effect that might be useful under conditions of excessive glutamatergic activity.


Asunto(s)
Aminoácidos Dicarboxílicos/farmacología , Baclofeno/farmacología , Agonistas de Aminoácidos Excitadores/farmacología , Agonistas del GABA/farmacología , Sinaptosomas/efectos de los fármacos , Ácido gamma-Aminobutírico/metabolismo , Animales , Corteza Cerebral/citología , Quelantes/farmacología , Estrenos/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Masculino , Neuronas/ultraestructura , Compuestos Organofosforados/farmacología , Inhibidores de Fosfodiesterasa/farmacología , Pirrolidinonas/farmacología , Ratas , Ratas Wistar , Sinaptosomas/metabolismo , Factores de Tiempo
5.
J Neurochem ; 115(2): 411-22, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20681950

RESUMEN

In the present study, by means of genetic, biochemical, morphological, and electrophysiological approaches, the role of large-conductance voltage- and Ca(2+)-dependent K(+) channels (BK channels) in the release of excitatory and non-excitatory neurotransmitters at hippocampal and non-hippocampal sites has been investigated. The results obtained show that the pharmacological modulation of pre-synaptic BK channels selectively regulates [(3)H]D-aspartate release from cortical and hippocampal rat synaptosomes, but it fails to influence the release of excitatory neurotransmitters from cerebellar nerve endings or that of [(3)H]GABA, [(3)H]Noradrenaline, or [(3)H]Dopamine from any of the brain regions investigated. Confocal immunofluorescence experiments in hippocampal or cerebrocortical nerve terminals revealed that the main pore-forming BK α subunit was more abundantly expressed in glutamatergic (vGLUT1(+)) versus GABAergic (GAD(65-67)(+)) nerve terminals. Double patch recordings in monosynaptically connected hippocampal neurons in culture confirmed a preferential control exerted by BK channels on glutamate over GABA release. Altogether, the present results highlight a high degree of specificity in the regulation of the release of various neurotransmitters from distinct brain regions by BK channels, supporting the concept that BK channel modulators can be used to selectively limit excessive excitatory amino acid release, a major pathogenetic mechanism in several neuropsychiatric disorders.


Asunto(s)
Corteza Cerebral/citología , Ácido Glutámico/metabolismo , Hipocampo/citología , Canales de Potasio Calcio-Activados/metabolismo , Terminales Presinápticos/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Animales , Animales Recién Nacidos , Área Bajo la Curva , Ácido Aspártico/metabolismo , Calcio/metabolismo , Células Cultivadas , Cricetinae , Cricetulus , Dopamina/metabolismo , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Masculino , Ratones , Ratones Noqueados , Microscopía Confocal , Norepinefrina/metabolismo , Péptidos/farmacología , Canales de Potasio Calcio-Activados/deficiencia , Ratas , Ratas Wistar , Sinaptofisina/metabolismo , Sinaptosomas/metabolismo , Transfección/métodos , Tritio/metabolismo , Proteína 1 de Transporte Vesicular de Glutamato/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...