Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Tissue Cell ; 85: 102240, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37879288

RESUMEN

Development, growth, and remodeling of blood vessels occur through an intricate process involving cell differentiation, proliferation, and rearrangement by cell migration under the direction of various signaling pathways. Recent reports highlight that resident and exogenous mesenchymal stromal cells (MSCs) have the potential to regulate the neovascularization process through paracrine secretion of proangiogenic factors. Recent research has established that the vasculogenic potential of MSCs is regulated by several signaling pathways, including the Wnt signaling pathway, and their interplay. These findings emphasize the complex nature of the vasculogenic process and underscore the importance of understanding the underlying molecular mechanisms for the development of effective cell-based therapies in regenerative medicine. This review provides an updated briefing on the canonical and non-canonical Wnt signaling pathways and summarizes the recent reports of both in vitro and in vivo studies with the involvement of MSCs of various sources in the vasculogenic process mediated by Wnt signaling pathways. Here we outline the current understanding of the plausible role of the Wnt signaling pathway, specifically in MSC-regulated angiogenesis.


Asunto(s)
Células Madre Mesenquimatosas , Vía de Señalización Wnt , Diferenciación Celular , Movimiento Celular
2.
Cell Signal ; 101: 110496, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36252791

RESUMEN

Nitric Oxide (NO) is a highly diffusible, ubiquitous signaling molecule and a free radical that is naturally synthesized by our body. The pleiotropic effects of NO in biological systems are due to its reactivity with different molecules, such as molecular oxygen (O2), superoxide anion, DNA, lipids, and proteins. There are several contradictory findings in the literature pertaining to its role in oncology. NO is a Janus-faced molecule shown to have both tumor promoting and tumoricidal effects, which depend on its concentration, duration of exposure, and location. A high concentration is shown to have cytotoxic effects by triggering apoptosis, and at a low concentration, NO promotes angiogenesis, metastasis, and tumor progression. Upregulated NO synthesis has been implicated as a causal factor in several pathophysiological conditions including cancer. This dichotomous effect makes it highly challenging to discover its true potential in cancer biology. Understanding the mechanisms by which NO acts in different cancers helps to develop NO based therapeutic strategies for cancer treatment. This review addresses the physiological role of this molecule, with a focus on its bimodal action in various types of cancers.


Asunto(s)
Neoplasias , Óxido Nítrico , Humanos , Óxido Nítrico/metabolismo , Neoplasias/patología , Transducción de Señal , Apoptosis , Superóxidos/metabolismo
3.
Cell Signal ; 78: 109858, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33253912

RESUMEN

Recent studies have suggested that Hippo signaling is not only involved in controlling organ size in Drosophila but can also regulate cell proliferation, tissue homeostasis, differentiation, apoptosis and regeneration. Any dysregulation of Hippo signaling, especially the hyper activation of its downstream effectors YAP/TAZ, can lead to uncontrolled cell proliferation and malignant transformation. In majority of cancers, expression of YAP/TAZ is extremely high and this increased expression of YAP/TAZ has been shown to be an independent predictor of prognosis and indicator of increased cell proliferation, metastasis and poor survival. In this review, we have summarized the most recent findings about the cross talk of Hippo signaling pathway with other signaling pathways and its regulation by different miRNAs in various cancer types. Recent evidence has suggested that Hippo pathway is also involved in mediating the resistance of different cancer cells to chemotherapeutic drugs and in a few cancer types, this is brought about by regulating miRNAs. Therefore, the delineation of the underlying mechanisms regulating the chemotherapeutic resistance might help in developing better treatment options. This review has attempted to provide an overview of different drugs/options which can be utilized to target oncogenic YAP/TAZ proteins for therapeutic interventions.


Asunto(s)
Vía de Señalización Hippo , MicroARNs/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , ARN Neoplásico/metabolismo , Animales , Drosophila melanogaster , Humanos , MicroARNs/genética , Proteínas de Neoplasias/genética , Neoplasias/genética , ARN Neoplásico/genética
4.
Hum Mol Genet ; 19(7): 1248-62, 2010 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-20053669

RESUMEN

Magmas, a conserved mammalian protein essential for eukaryotic development, is overexpressed in prostate carcinomas and cells exposed to granulocyte-macrophage colony-stimulating factor (GM-CSF). Reduced Magmas expression resulted in decreased proliferative rates in cultured cells. However, the cellular function of Magmas is still elusive. In this report, we have showed that human Magmas is an ortholog of Saccharomyces cerevisiae Pam16 having similar functions and is critical for protein translocation across mitochondrial inner membrane. Human Magmas shows a complete growth complementation of Deltapam16 yeast cells at all temperatures. On the basis of our analysis, we report that Magmas localizes into mitochondria and is peripherally associated with inner mitochondrial membrane in yeast and humans. Magmas forms a stable subcomplex with J-protein Pam18 or DnaJC19 through its C-terminal region and is tethered to TIM23 complex of yeast and humans. Importantly, amino acid alterations in Magmas leads to reduced stability of the subcomplex with Pam18 that results in temperature sensitivity and in vivo protein translocation defects in yeast cells. These observations highlight the central role of Magmas in protein import and mitochondria biogenesis. In humans, absence of a functional DnaJC19 leads to dilated cardiac myophathic syndrome (DCM), a genetic disorder with characteristic features of cardiac myophathy and neurodegeneration. We propose that the mutations resulting in decreased stability of functional Magmas:DnaJC19 subcomplex at human TIM23 channel leads to impaired protein import and cellular respiration in DCM patients. Together, we propose a model showing how Magmas:DnaJC19 subcomplex is associated with TIM23 complex and thus regulates mitochondrial import process.


Asunto(s)
Cardiomiopatía Dilatada/genética , Mitocondrias/fisiología , Proteínas Mitocondriales/fisiología , Transporte de Proteínas , Amidina-Liasas/metabolismo , Células Cultivadas , Células HeLa , Humanos , Proteínas de Transporte de Membrana/metabolismo , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Oxigenasas de Función Mixta/metabolismo , Mutación , Proteínas de Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA