Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 23
1.
Diabetes Metab J ; 2024 Feb 02.
Article En | MEDLINE | ID: mdl-38310881

Background: Insulin resistance (IR) is the key pathological basis of many metabolic disorders. Lack of asialoglycoprotein receptor 1 (ASGR1) decreased the serum lipid levels and reduced the risk of coronary artery disease. However, whether ASGR1 also participates in the regulatory network of insulin sensitivity and glucose metabolism remains unknown. Methods: The constructed ASGR1 knockout mice and ASGR1-/- HepG2 cell lines were used to establish the animal model of metabolic syndrome and the IR cell model by high-fat diet (HFD) or drug induction, respectively. Then we evaluated the glucose metabolism and insulin signaling in vivo and in vitro. Results: ASGR1 deficiency ameliorated systemic IR in mice fed with HFD, evidenced by improved insulin intolerance, serum insulin, and homeostasis model assessment of IR index, mainly contributed from increased insulin signaling in the liver, but not in muscle or adipose tissues. Meanwhile, the insulin signal transduction was significantly enhanced in ASGR1-/- HepG2 cells. By transcriptome analyses and comparison, those differentially expressed genes between ASGR1 null and wild type were enriched in the insulin signal pathway, particularly in phosphoinositide 3-kinase-AKT signaling. Notably, ASGR1 deficiency significantly reduced hepatic gluconeogenesis and glycogenolysis. Conclusion: The ASGR1 deficiency was consequentially linked with improved hepatic insulin sensitivity under metabolic stress, hepatic IR was the core factor of systemic IR, and overcoming hepatic IR significantly relieved the systemic IR. It suggests that ASGR1 is a potential intervention target for improving systemic IR in metabolic disorders.

2.
Genomics ; 116(2): 110801, 2024 Mar.
Article En | MEDLINE | ID: mdl-38286347

Tibetan cashmere goats are not only served as a valuable model for studying adaptation to hypoxia and high-altitude conditions but also playing a pivotal role in bolstering local economies through the provision of premium quality cashmere yarn. In this study, we performed an integration and network analysis of metabolomic, transcriptomic and proteomic to elucidate the role of differentially expressed genes, important metabolites, and relevant cellular and metabolic pathways between the fine (average 12.04 ± 0.03 µm of mean fiber diameter) and coarse cashmere (average 14.88 ± 0.05 µm of mean fber diameter) producing by Tibetan cashmere goats. We identified a distinction of 56 and 71 differential metabolites (DMs) between the F and C cashmere groups under positive and negative ion modes, respectively. The KEGG pathway enrichment analysis of these DMs highlighted numerous pathways predominantly involved in amino acid and protein metabolism, as indicated by the finding that the most impactful pathway was the mammalian target of rapamycin (mTOR) signalling pathway. In the F group, we identified a distinctive metabolic profile where amino acid metabolites including serine, histidine, asparagine, glutamic acid, arginine, valine, aspartic acid, tyrosine, and methionine were upregulated, while lysine, isoleucine, glutamine, tryptophan, and threonine were downregulated. The regulatory network and gene co-expression network revealed crucial genes, metabolites, and metabolic pathways. The integrative omics analysis revealed a high enrichment of several pathways, notably encompassing protein digestion and absorption, sphingolipid signalling, and the synaptic vesicle cycle. Within the sphere of our integrative analysis, DNMT3B was identified as a paramount gene, intricately associated with significant proteins such as HMCN1, CPB2, GNG12, and LRP1. Our present study delineated the molecular underpinnings governing the variations in cashmere characteristics by conducting comprehensive analyses across metabolomic, transcriptomic, and proteomic dimensions. This research provided newly insights into the mechanisms regulating cashmere traits and facilitated the advancement of selective breeding programs aimed at cultivating high-quality superfine Tibetan cashmere goats.


Goats , Proteomics , Animals , Goats/genetics , Tibet , Phenotype , Amino Acids
3.
J Agric Food Chem ; 71(31): 11902-11920, 2023 Aug 09.
Article En | MEDLINE | ID: mdl-37490609

Heat stress (HS) negatively influences cows' welfare and productivity. Therefore, a better understanding of the physiological and molecular mechanisms of HS responses from multiple parities is paramount for the development of effective management and breeding strategies. In comparison with first-parity cows in the spring (Spring-1), first-parity cows in the summer (Summer-1) had a significantly higher rectal temperature (RT), respiration rate (RR), drooling score (DS), and daily activity (DA), while lower (P < 0.05) daily rumination (DR), seven-day average milk yield (7AMY), milk yield on sampling day (MY_S), milk yield on test day (MY_T), and lactose percentage (LP) were observed. When comparing the spring (Spring-2) and summer (Summer-2) of the second-parity cows, significant differences were also found in RT, RR, DS, DA, and DR (P < 0.05), corresponding to similar trends with the first parity while having smaller changes. Moreover, significantly negative impacts on performance traits were only observed on fat percentage (FP) and LP. These results showed that there were different biological responses between first- and second-parity Holstein cows. Further, 18 and 17 metabolites were involved in the seasonal response of first- and second-parity cows, respectively. Nine differential metabolites were shared between the two parities, and pathway analyses suggested that cows had an inhibited tricarboxylic acid cycle, increased utilization of lipolysis, and a dysregulated gut microbiome during the summer. The metabolites identified exclusively for each parity highlighted the differences in microbial response and host amino acid metabolism between two parities in response to HS. Moreover, glucose, ethanol, and citrate were identified as potential biomarkers for distinguishing individuals between Spring-1 and Summer-1. Ethanol and acetone were better predictors for distinguishing individuals between Spring-2 and Summer-2. Taken together, the present study demonstrated the impact of naturally induced HS on physiological parameters, production traits, and the blood metabolome of Holstein cows. There are different biological responses and regulation mechanisms between first- and second-parity Holstein cows.


Lactation , Milk , Animals , Cattle , Female , Pregnancy , Heat-Shock Response , Lactation/physiology , Milk/chemistry , Parity , Seasons
4.
Biology (Basel) ; 11(12)2022 Nov 29.
Article En | MEDLINE | ID: mdl-36552250

The molecular mechanisms underlying heat stress tolerance in animals to high temperatures remain unclear. This study identified the differentially expressed mRNA isoforms which narrowed down the most reliable DEG markers and molecular pathways that underlie the mechanisms of thermoregulation. This experiment was performed on Sprague Dawley rats housed at 22 °C (control group; CT), and three acute heat-stressed groups housed at 42 °C for 30 min (H30), 60 min (H60), and 120 min (H120). Earlier, we demonstrated that acute heat stress increased the rectal temperature of rats, caused abnormal changes in the blood biochemical parameters, as well as induced dramatic changes in the expression levels of genes through epigenetics and post-transcriptional regulation. Transcriptomic analysis using RNA-Sequencing (RNA-Seq) data obtained previously from blood (CT and H120), liver (CT, H30, H60, and H120), and adrenal glands (CT, H30, H60, and H120) was performed. The differentially expressed mRNA isoforms (DEIs) were identified and annotated by the CLC Genomics Workbench. Biological process and metabolic pathway analyses were performed using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. A total of 225, 5764, and 4988 DEIs in the blood, liver, and adrenal glands were observed. Furthermore, the number of novel differentially expressed transcript lengths with annotated genes and novel differentially expressed transcript with non-annotated genes were 136 and 8 in blood, 3549 and 120 in the liver, as well as 3078 and 220 in adrenal glands, respectively. About 35 genes were involved in the heat stress response, out of which, Dnaja1, LOC680121, Chordc1, AABR07011951.1, Hsp90aa1, Hspa1b, Cdkn1a, Hmox1, Bag3, and Dnaja4 were commonly identified in the liver and adrenal glands, suggesting that these genes may regulate heat stress response through interactions between the liver and adrenal glands. In conclusion, this study would enhance our understanding of the complex underlying mechanisms of acute heat stress, and the identified mRNA isoforms and genes can be used as potential candidates for thermotolerance selection in mammals.

5.
Int J Mol Sci ; 23(18)2022 Sep 14.
Article En | MEDLINE | ID: mdl-36142577

Heat stress (HS) severely impacts the productivity and welfare of dairy cows. Investigating the biological mechanisms underlying HS response is crucial for developing effective mitigation and breeding strategies. Therefore, we evaluated the changes in milk yield, physiological indicators, blood biochemical parameters, and alternative splicing (AS) patterns of lactating Holstein cows during thermoneutral (TN, N = 19) and heat-stress (HS, N = 17) conditions. There was a significant (p < 0.05) decline in milk yield as physiological indicators increased after exposure to natural HS conditions. The levels of eight out of 13 biochemical parameters of HS were also significantly altered in the presence of HS (p < 0.05). These results demonstrate that HS negatively influences various biological processes of Holstein cows. Furthermore, we investigated AS events based on the RNA-seq data from blood samples. With HS, five common types of AS events were generally increased by 6.7−38.9%. A total of 3470 AS events corresponding to 3143 unique genes were differentially alternatively spliced (DSGs) (p-adjusted < 0.05) between TN and HS groups. The functional annotation results show that the majority of DSGs are involved in mRNA splicing and spliceosomal complex, followed by enrichment in immune and metabolic processes. Eighty-seven out of 645 differentially expressed genes (DEGs) (fold change ≥ 1.5 and false discovery rate < 0.05) overlapped with DSGs. Further analyses showed that 20 of these genes were significantly enriched for the RNA splicing, RNA binding, and RNA transport. Among them, two genes (RBM25 and LUC7L3) had strong interrelation and co-expression pattern with other genes and were identified as candidate genes potentially associated with HS responses in dairy cows. In summary, AS plays a crucial role in changing the transcriptome diversity of heat-stress-related genes in multiple biological pathways and provides a different regulation mechanism from DEGs.


Heat Stress Disorders , Lactation , Alternative Splicing , Animals , Cattle , Female , Gene Expression Profiling , Heat Stress Disorders/genetics , Heat Stress Disorders/metabolism , Heat Stress Disorders/veterinary , Heat-Shock Response/genetics , Hot Temperature , Milk/metabolism , RNA/metabolism , RNA, Messenger/metabolism
6.
Res Vet Sci ; 152: 323-332, 2022 Dec 20.
Article En | MEDLINE | ID: mdl-36088773

Arachnomelia syndrome (AS) is an autosomal recessive hereditary disorder in cattle, and affected calves are usually stillborn and characterized by complex anomalies. Therefore, identification of the carrier animals based on genetic tests is important for the control and elimination of this defect. The aim of this study was to build an effective workflow to routinely screen the AS mutations in bovine MOSC1 and SUOX genes and determine individuals carrying the AS mutations in four Chinese cattle populations. By combining the fluorescence-labeled PCR and capillary electrophoresis, we established a convenient and cost-effective workflow to detect two AS casual mutations simultaneously. Sanger sequencing was further used as a validation criterion and showed that 100% of the tests (37/37) had consistent results with genotype calls determined by our established workflow. Then, 582 bulls and 1-926 cows from Chinese dual-purpose cattle populations of Simmental, Sanhe, Shuxuan, and Xinjiang Brown were subjected to AS detection. The results showed that four bulls and 11 cows in the Simmental population, and six bulls and six cows in the Sanhe population were identified as AS carriers with the MOCS1 mutation c.1224_1225delCA. However, no animal was found to carry the c.363_364insG mutation in the SUOX gene. The frequencies of AS carriers were 1.08% and 1.65% in the Simmental and Sanhe populations, respectively, with a frequency of 1.076% in four populations. The pedigree analysis found that all carriers could be traced back to a common ancestor, the German Simmental sire ROMEL. Those findings suggested that this genetic defect spread into China mainly through the wide use of ROMEL. In conclusion, the occurrence of AS has not had a wide impact on the Chinese cattle industry; however, a screening system and mating strategy should be employed to gradually eliminate this recessive gene from the Chinese dual-purpose cattle population.


Cattle Diseases , Female , Cattle/genetics , Animals , Male , Cattle Diseases/genetics , Polymerase Chain Reaction/veterinary , Genotype , Mutation , China/epidemiology
7.
Genomics ; 114(5): 110449, 2022 09.
Article En | MEDLINE | ID: mdl-35985612

Molecular responses to heat stress are multifaceted and under a complex cellular post-transcriptional control. This study explores the epigenetic and transcriptional alterations induced by heat stress (42 °C for 120 min) in the liver of rats, by integrating ATAC-seq, RNA-Seq, and WGBS information. Out of 2586 differential ATAC-seq peaks induced by heat stress, 36 up-regulated and 22 down-regulated transcript factors (TFs) are predicted, such as Cebpα, Foxa2, Foxo4, Nfya and Sp3. Furthermore, 150,189 differentially methylated regions represent 2571 differentially expressed genes (DEGs). By integrating all data, 45 DEGs are concluded as potential heat stress response markers in rats. To comprehensively annotate and narrow down predicted markers, they are integrated with GWAS results of heat stress parameters in cows, and PheWAS data in humans. Besides better understanding of heat stress responses in mammals, INSR, MAPK8, RHPN2 and BTBD7 are proposed as candidate markers for heat stress in mammals.


Epigenomics , Gene Expression Profiling , Adaptor Proteins, Signal Transducing/genetics , Animals , Cattle , Female , Forkhead Transcription Factors/genetics , Gene Expression Profiling/methods , Genes, Regulator , Heat-Shock Response/genetics , Humans , Liver , Mammals/genetics , Rats
8.
J Anim Sci Biotechnol ; 13(1): 108, 2022 Aug 20.
Article En | MEDLINE | ID: mdl-35986427

BACKGROUND: The study of molecular processes regulating heat stress response in dairy cattle is paramount for developing mitigation strategies to improve heat tolerance and animal welfare. Therefore, we aimed to identify quantitative trait loci (QTL) regions associated with three physiological indicators of heat stress response in Holstein cattle, including rectal temperature (RT), respiration rate score (RS), and drooling score (DS). We estimated genetic parameters for all three traits. Subsequently, a weighted single-step genome-wide association study (WssGWAS) was performed based on 3200 genotypes, 151,486 phenotypic records, and 38,101 animals in the pedigree file. The candidate genes located within the identified QTL regions were further investigated through RNA sequencing (RNA-seq) analyses of blood samples for four cows collected in April (non-heat stress group) and four cows collected in July (heat stress group). RESULTS: The heritability estimates for RT, RS, and DS were 0.06, 0.04, and 0.03, respectively. Fourteen, 19, and 20 genomic regions explained 2.94%, 3.74%, and 4.01% of the total additive genetic variance of RT, RS, and DS, respectively. Most of these genomic regions are located in the Bos taurus autosome (BTA) BTA3, BTA6, BTA8, BTA12, BTA14, BTA21, and BTA24. No genomic regions overlapped between the three indicators of heat stress, indicating the polygenic nature of heat tolerance and the complementary mechanisms involved in heat stress response. For the RNA-seq analyses, 2627 genes were significantly upregulated and 369 downregulated in the heat stress group in comparison to the control group. When integrating the WssGWAS, RNA-seq results, and existing literature, the key candidate genes associated with physiological indicators of heat stress in Holstein cattle are: PMAIP1, SBK1, TMEM33, GATB, CHORDC1, RTN4IP1, and BTBD7. CONCLUSIONS: Physiological indicators of heat stress are heritable and can be improved through direct selection. Fifty-three QTL regions associated with heat stress indicators confirm the polygenic nature and complex genetic determinism of heat tolerance in dairy cattle. The identified candidate genes will contribute for optimizing genomic evaluation models by assigning higher weights to genetic markers located in these regions as well as to the design of SNP panels containing polymorphisms located within these candidate genes.

9.
Front Genet ; 13: 882951, 2022.
Article En | MEDLINE | ID: mdl-35754833

In our previous GWAS of Chinese and Nordic dairy cattle, genes CACNB2, SLC39A12, and ZEB1 locating on BTA 13 were suggested as candidate genes for reproduction. In this study, validation of these associations was performed in an independent population with records of nine reproductive traits. More importantly, functions of these genes in the reproductive process were verified by employing the expression data of ovarian follicles. The potential variants within the three genes were firstly detected in 68 Chinese Holstein bulls, and then screened in 1,588 Chinese Holstein cows using the KASP (Kompetitive allele-specific PCR) method. There were nine variants with polymorphisms in CACNB2, five in SLC39A12, and four in ZEB1, respectively, of which one SNP was in the upstream regulatory region, two in exon region, four in downstream regulatory region, and 11 SNPs in intronic regions. Amongst the 18 variants, g.33267056T/G in CACNB2 explained the largest phenotypic variance for age at first calving (0.011%), interval from first to last insemination (0.004%), and calving ease (0.002%), while g.32751518G/A in SLC39A12 contributed the most to stillbirth in heifers (0.038%). Two haplotype blocks were constructed for CACNB2 while one each for SLC39A12 and ZEB1, which were significantly associated with five reproductive traits, including age at the first service, age at the first calving, calving ease in heifers and cows, and the interval from calving to the first insemination. We then studied the profile of gene expression in granulosa cells isolated from four developmental stages of ovarian follicles from eight dairy cows. All three genes were differentially expressed between ovarian follicles with different sizes (p < 0.05), indicating their potential roles in the reproductive process of dairy cows. This study successfully demonstrated the associations of three BTA 13 genes CACNB2, SLC39A12, and ZEB1 with reproduction and further examined their expression levels in ovarian follicles directly. These findings can be beneficial for the ongoing genomic selection program for reproductive traits which have long been considered as traits that are difficult to achieve genetic improvement due to the lack of efficient genetic markers.

10.
Biology (Basel) ; 11(6)2022 May 30.
Article En | MEDLINE | ID: mdl-35741360

Previous studies reported the physical, transcriptome, and metabolome changes in in vitro acute heat-stressed (38 °C versus 43 °C for 2 h) bovine granulosa cells. Granulosa cells exhibited transient proliferation senescence, oxidative stress, an increased rate of apoptosis, and a decline in steroidogenic activity. In this study, we performed a joint integration and network analysis of metabolomic and transcriptomic data to further narrow down and elucidate the role of differentially expressed genes, important metabolites, and relevant cellular and metabolic pathways in acute heat-stressed granulosa cells. Among the significant (raw p-value < 0.05) metabolic pathways where metabolites and genes converged, this study found vitamin B6 metabolism, glycine, serine and threonine metabolism, phenylalanine metabolism, arginine biosynthesis, tryptophan metabolism, arginine and proline metabolism, histidine metabolism, and glyoxylate and dicarboxylate metabolism. Important significant convergent biological pathways included ABC transporters and protein digestion and absorption, while functional signaling pathways included cAMP, mTOR, and AMPK signaling pathways together with the ovarian steroidogenesis pathway. Among the cancer pathways, the most important pathway was the central carbon metabolism in cancer. Through multiple analysis queries, progesterone, serotonin, citric acid, pyridoxal, L-lysine, succinic acid, L-glutamine, L-leucine, L-threonine, L-tyrosine, vitamin B6, choline, and CYP1B1, MAOB, VEGFA, WNT11, AOX1, ADCY2, ICAM1, PYGM, SLC2A4, SLC16A3, HSD11B2, and NOS2 appeared to be important enriched metabolites and genes, respectively. These genes, metabolites, and metabolic, cellular, and cell signaling pathways comprehensively elucidate the mechanisms underlying the intricate fight between death and survival in acute heat-stressed bovine granulosa cells and essentially help further our understanding (and will help the future quest) of research in this direction.

11.
Cells ; 11(9)2022 04 25.
Article En | MEDLINE | ID: mdl-35563749

Heat stress affects granulosa cells (GCs) and the ovarian follicular microenvironment, causing poor oocyte developmental competence and fertility. This study aimed to investigate the physical responses and global transcriptomic changes in bovine GCs to acute heat stress (43 °C for 2 h) in vitro. Heat-stressed GCs exhibited transient proliferation senescence and resumed proliferation at 48 h post-stress, while post-stress immediate culture-media change had a relatively positive effect on proliferation resumption. Increased accumulation of reactive oxygen species and apoptosis was observed in the heat-stress group. In spite of the upregulation of inflammatory (CYCS, TLR2, TLR4, IL6, etc.), pro-apoptotic (BAD, BAX, TNFSF9, MAP3K7, TNFRSF6B, FADD, TRADD, RIPK3, etc.) and caspase executioner genes (CASP3, CASP8, CASP9), antioxidants and anti-apoptotic genes (HMOX1, NOS2, CAT, SOD, BCL2L1, GPX4, etc.) were also upregulated in heat-stressed GCs. Progesterone and estrogen hormones, along with steroidogenic gene expression, declined significantly, in spite of the upregulation of genes involved in cholesterol synthesis. Out of 12,385 differentially expressed genes (DEGs), 330 significant DEGs (75 upregulated, 225 downregulated) were subjected to KEGG functional pathway annotation, gene ontology enrichment, STRING network analyses and manual querying of DEGs for meaningful molecular mechanisms. High inflammatory response was found to be responsible for oxidative-stress-mediated apoptosis of GCs and nodes towards the involvement of the NF-κB pathway and repression of the Nrf2 pathway. Downregulation of MDM4, TP53, PIDD1, PARP3, MAPK14 and MYC, and upregulation of STK26, STK33, TGFB2, CDKN1A and CDKN2A, at the interface of the MAPK and p53 signaling pathway, can be attributed to transient cellular senescence and apoptosis in GCs. The background working of the AMPK pathway through upregulation of AKT1, AMPK, SIRT1, PYGM, SLC2A4 and SERBP1 genes, and downregulation of PPARGCIA, IGF2, PPARA, SLC27A3, SLC16A3, TSC1/2, KCNJ2, KCNJ16, etc., evidence the repression of cellular transcriptional activity and energetic homeostasis modifications in response to heat stress. This study presents detailed responses of acute-heat-stressed GCs at physical, transcriptional and pathway levels and presents interesting insights into future studies regarding GC adaptation and their interaction with oocytes and the reproductive system at the ovarian level.


AMP-Activated Protein Kinases , Transcriptome , AMP-Activated Protein Kinases/metabolism , Adaptation, Psychological , Animals , Cattle , Female , Granulosa Cells/metabolism , Heat-Shock Response/genetics , Oxidation-Reduction , Transcriptome/genetics
12.
BMC Genomics ; 23(1): 191, 2022 Mar 07.
Article En | MEDLINE | ID: mdl-35255833

BACKGROUND: Tibetan cashmere goats are served as a valuable model for high altitude adaptation and hypoxia complications related studies, while the cashmere produced by these goats is an important source of income for the herders. The aim of this study was to investigate the differences in protein abundance underlying the fine (average 12.20 ± 0.03 µm of mean fiber diameter) and coarse cashmere (average 14.67 ± 0.05 µm of mean fiber diameter) producing by Tibetan cashmere goats. We systematically investigated the genetic determinants of fiber diameter by integrated analysis with proteomic and transcriptomic datasets from skin tissues of Tibetan cashmere goats. RESULTS: We identified 1980 proteins using a label-free proteomics approach. They were annotated to three different databases, while 1730 proteins were mapped to the original protein coding genes (PCGs) of the transcriptomic study. Comparative analyses of cashmere with extremely fine vs. coarse phenotypes yielded 29 differentially expressed proteins (DEPs), for instance, APOH, GANAB, AEBP1, CP, CPB2, GPR142, VTN, IMPA1, CTSZ, GLB1, and HMCN1. Functional enrichment analysis of these DEPs revealed their involvement in oxidation-reduction process, cell redox homeostasis, metabolic, PI3K-Akt, MAPK, and Wnt signaling pathways. Transcription factors enrichment analysis revealed the proteins mainly belong to NF-YB family, HMG family, CSD family. We further validated the protein abundance of four DEPs (GC, VTN, AEBP1, and GPR142) through western blot, and considered they were the most potential candidate genes for cashmere traits in Tibetan cashmere goats. CONCLUSIONS: These analyses indicated that the major biological variations underlying the difference of cashmere fiber diameter in Tibetan cashmere goats were attributed to the inherent adaptations related to metabolic, hypoxic, and stress response differences. This study provided novel insights into the breeding strategies for cashmere traits and enhance the understanding of the biological and genetic mechanisms of cashmere traits in Tibetan cashmere goats.


Goats , Transcriptome , Animals , Goats/genetics , Hypoxia/genetics , Phenotype , Phosphatidylinositol 3-Kinases/genetics , Plant Breeding , Proteome/genetics , Proteomics , Tibet
13.
Int J Mol Sci ; 23(4)2022 Feb 15.
Article En | MEDLINE | ID: mdl-35216260

Heat stress affects granulosa cells and the ovarian follicular microenvironment, ultimately resulting in poor oocyte developmental competence. This study aims to investigate the metabo-lomics response of bovine granulosa cells (bGCs) to in vitro acute heat stress of 43 °C. Heat stress triggers oxidative stress-mediated apoptosis in cultured bGCs. Heat-stressed bGCs exhibited a time-dependent recovery of proliferation potential by 48 h. A total of 119 metabolites were identified through LC-MS/MS-based metabolomics of the spent culture media, out of which, 37 metabolites were determined as differentially involved in metabolic pathways related to bioenergetics support mechanisms and the physical adaptations of bGCs. Multiple analyses of metabolome data identified choline, citric acid, 3-hydroxy-3-methylglutaric acid, glutamine, and glycocyamine as being upregulated, while galactosamine, AICAR, ciliatine, 16-hydroxyhexadecanoic acid, lysine, succinic acid, uridine, xanthine, and uraconic acid were the important downregulated metabolites in acute heat stress. These differential metabolites were implicated in various important metabolic pathways directed towards bioenergetics support mechanisms including glycerophospholipid metabolism, the citrate cycle (TCA cycle), glyoxylate and dicarboxylate metabolism, and serine, threonine, and tyrosine metabolism. Our study presents important metabolites and metabolic pathways involved in the adaptation of bGCs to acute heat stress in vitro.


Granulosa Cells/metabolism , Heat-Shock Response/physiology , Metabolome/physiology , Animals , Apoptosis/physiology , Cattle , Cattle Diseases/metabolism , Cells, Cultured , Chromatography, Liquid/methods , Female , Hot Temperature , Metabolomics/methods , Oxidative Stress/physiology , Tandem Mass Spectrometry/methods
14.
Metabolites ; 12(1)2022 Jan 10.
Article En | MEDLINE | ID: mdl-35050182

Early successful conception of postpartum dairy cows is crucial in determining the optimum reproductive efficiency and profitability in modern dairy farming. Due to the inherent high production potential of modern dairy cows, the extra stress burden of peri-parturient events, and associated endocrine and metabolic changes causes negative energy balance (NEBAL) in postpartum cows. The occurrence of NEBAL is associated with excessive fat mobilization in the form of non-esterified fatty acids (NEFAs). The phenomenon of NEFA mobilization furthers with occurrence of ketosis and fatty liver in postpartum dairy cows. High NEFAs and ketones are negatively associated with health and reproductive processes. An additional burden of hypocalcemia, ruminal acidosis, and high protein metabolism in postpartum cows presents further consequences for health and reproductive performance of postpartum dairy cows. This review intends to comprehend these major nutritional metabolic alterations, their mechanisms of influence on the reproduction process, and relevant mitigation strategies.

15.
Animals (Basel) ; 11(9)2021 Aug 25.
Article En | MEDLINE | ID: mdl-34573458

Inner-Mongolia Sanhe cattle are well-adapted to low-temperature conditions, but the metabolic mechanisms underlying their climatic resilience are still unknown. Based on the 1H Nuclear Magnetic Resonance platform, 41 metabolites were identified and quantified in the serum of 10 heifers under thermal neutrality (5 °C), and subsequent exposure to hyper-cold temperature (-32 °C) for 3 h. Subsequently, 28 metabolites were pre-filtrated, and they provided better performance in multivariate analysis than that of using 41 metabolites. This indicated the need for pre-filtering of the metabolome data in a paired experimental design. In response to the cold exposure challenge, 19 metabolites associated with cold stress response were identified, mainly enriched in "aminoacyl-tRNA biosynthesis" and "valine, leucine, and isoleucine degradation". A further integration of metabolome and gene expression highlighted the functional roles of the DLD (dihydrolipoamide dehydrogenase), WARS (tryptophanyl-tRNA synthetase), and RARS (arginyl-tRNA synthetase) genes in metabolic pathways of valine and leucine. Furthermore, the essential regulations of SLC30A6 (solute carrier family 30 (zinc transporter), member 6) in metabolic transportation for propionate, acetate, valine, and leucine under severe cold exposure were observed. Our findings presented a comprehensive characterization of the serum metabolome of Inner-Mongolia Sanhe cattle, and contributed to a better understanding of the crucial roles of regulations in metabolites and metabolic pathways during cold stress events in cattle.

16.
Genomics ; 113(1 Pt 1): 183-192, 2021 01.
Article En | MEDLINE | ID: mdl-33326831

Chloroplast (cp) genomes are considered important for the study of lineage-specific molecular evolution, population genetics, and phylogenetics. Our aim here was to elucidate the molecular evolution in cp genomes of species in the Dracunculus clade (Aroideae, Araceae). We report de novo assembled cp genomes for eight species from eight genera and also retrieved cp genomes of four species from the National Center for Biotechnology Information (NCBI). The cp genomes varied in size from 162,424 bp to 176,835 bp. Large Single Copy (LSC) region ranged in size from 87,141 bp to 95,475 bp; Small Single Copy (SSC) from 14,338 bp to 23,981 bp; and Inverted Repeats (IRa and IRb) from 25,131 bp to 32,708 bp. The expansion in inverted repeats led to duplication of ycf1 genes in four species. The genera showed high similarity in gene content and yielded 113 unique genes (79 protein-coding, 4 rRNA, and 30 tRNA genes). Codon usage, amino acid frequency, RNA editing sites, microsatellites repeats, transition and transversion substitutions, and synonymous and non-synonymous substitutions were also similar across the clade. A previous study reported deletion of ycf1, accD, psbE, trnL-CAA, and trnG-GCC genes in four Amorphophallus species. Our study supports conservative structure of cp genomes in the Dracunculus clade including Amorphophallus species and does not support gene deletion mentioned above. We also report suitable polymorphic loci based on comparative analyses of Dracunculus clade species, which could be useful for phylogenetic inference. Overall, the current study broad our knowledge about the molecular evolution of chloroplast genome in aroids.


Araceae/genetics , Evolution, Molecular , Genome, Chloroplast/genetics , Araceae/classification , Codon Usage , Gene Dosage , Microsatellite Repeats , Molecular Sequence Annotation , Phylogeny
17.
Animals (Basel) ; 10(11)2020 Nov 02.
Article En | MEDLINE | ID: mdl-33147724

Thermal stress (heat and cold) has large economic and welfare implications for the worldwide dairy industry. Therefore, it is paramount to understand the genetic background of coping mechanism related to thermal stress for the implementation of effective genetic selection schemes in dairy cattle. We performed an association study between 11 single nucleotide polymorphisms having minor allelic frequency (MAF > 0.05) in the HSP70 gene with blood biochemical parameters. The concentrations of growth hormone (GH), lactate (LA), prolactin (PRL), and superoxide dismutase (SOD) in blood were significantly higher (p < 0.05), while the concentrations of blood urea nitrogen (BUN), c-reactive protein (CRP), potassium (K+), lactate dehydrogenase (LDH), lipid peroxide (LPO), and norepinephrine (NE) were significantly lower (p < 0.05) in heat-stressed animals as compared to the control group. A significant (p < 0.05) increase in the concentrations of cortisol (COR), corticosterone (CORT), and potassium (K+) was observed (p < 0.05), while the concentrations of adrenocorticotrophic hormone (ACTH), dopamine (DA), GH, LDH, NE, PRL, and SOD were significantly lower in cold-stressed animals as compared to the control group (p < 0.05). Furthermore, SNP A-12G and C181T were significantly associated with LA (p < 0.05), while A72G was linked with LPO (p < 0.05) in heat-stressed animals. Moreover, the SNPs A-12G and SNP C131G were significantly associated (p < 0.05) with DA and SOD under cold stress condition, respectively. These SNPs markers significantly associated with fluctuations in blood biochemical parameters under thermal stress provide a better insight into the genetic mechanisms underlying climatic resilience in Holstein cattle.

18.
Metabolites ; 10(8)2020 Jul 31.
Article En | MEDLINE | ID: mdl-32751848

Heat stress is one of the main threats to dairy cow production; in order to resist heat stress, the animal exhibits a variety of physiological and hormonal responses driven by complex molecular mechanisms. Heat-stressed cows have high insulin activity, decreased non-esterified fatty acids, and increased glucose disposal. Glucose, as one of the important biochemical components of the energetic metabolism, is affected at multiple levels by the reciprocal changes in hormonal secretion and adipose metabolism under the influence of heat stress in dairy cattle. Therefore, alterations in glucose metabolism have negative consequences for the animal's health, production, and reproduction under heat stress. Lactose is a major sugar of milk which is affected by the reshuffle of the whole-body energetic metabolism during heat stress, contributing towards milk production losses. Glucose homeostasis is maintained in the body by one of the glucose transporters' family called facilitative glucose transporters (GLUTs encoded by SLC2A genes). Besides the glucose level, the GLUTs expression level is also significantly changed under the influence of heat stress. This review aims to describe the effect of heat stress on systemic glucose metabolism, facilitative glucose transporters, and its consequences on health and milk production.

19.
Animals (Basel) ; 10(6)2020 Jun 19.
Article En | MEDLINE | ID: mdl-32575551

Heat stress in dairy cattle is recognized to compromise fertility by altering the functions of ovarian follicle-enclosed cells, e.g., oocyte and granulosa cells (GCs). Catalase is an antioxidant enzyme that plays a significant role in cellular protection against oxidative damage by the degradation of hydrogen peroxide to oxygen and water. In this study, the role and mechanism of CAT on the heat stress (HS)-induced apoptosis and altered proliferation of bovine GCs were studied. The catalase gene was knocked-down successfully in bovine GCs at both the transcriptional and translational levels. After a successful knockdown using siRNA, GCs were divided into HS (40 °C + NC and 40 °C + CAT siRNA) and 38 °C + NC (NC) groups. The GCs were then examined for ROS, viability, mitochondrial membrane potential (MMP), cell cycle, and biosynthesis of progesterone (P4) and estrogen (E2) hormones. The results indicated that CAT silencing promoted ROS production and apoptosis by up-regulating the Bcl-2-associated X protein (BAX) and Caspase-3 genes both at the transcriptional and translational levels. Furthermore, the knockdown of CAT markedly disrupted the MMP, impaired the production of P4 and E2, altered the progression of the G1 phase of the cell cycle, and decreased the number of cells in the S phase. This was further verified by the down-regulation of proliferating cell nuclear antigen (PCNA), CyclinB1, steroidogenic acute regulatory protein (STAR), and cytochrome P450 family 11 subfamily A member 1 (Cyp11A1) genes. Our study presented a novel strategy to characterize how CAT can regulate cell proliferation and apoptosis in GCs under HS. We concluded that CAT is a broad regulatory marker in GCs by regulating apoptosis, cellular progression, and simultaneously by vital fluctuations in hormonal signaling. Our findings infer a crucial evidence of how to boost the fertility of heat-stressed cows.

20.
Animals (Basel) ; 10(5)2020 May 03.
Article En | MEDLINE | ID: mdl-32375261

: Higher milk yield and prolificacy of the modern dairy cattle requires high metabolism activities to support them. It causes high heat production by the body, which coupled with increasing environmental temperatures results in heat stress (HS). Production, health, and welfare of modern cattle are severely jeopardized due to their low adaptability to hot conditions. Animal activates a variety of physiological, endocrine, and behavioral mechanisms to cope with HS. Traditionally, decreased feed intake is considered as the major factor towards negative energy balance (NEBAL) leading to a decline in milk production. However, reciprocal changes related to insulin; glucose metabolism; failure of adipose mobilization; and skeletal muscle metabolism have appeared to be the major culprits behind HS specific NEBAL. There exists high insulin activity and glucose become preferential energy fuel. Physiological biochemistry of the heat stressed cows is characterized by low-fat reserves derived NEFA (non-esterified fatty acids) response, despite high energy demands. Besides these, physiological and gut-associated changes and poor feeding practices can further compromise the welfare and production of the heat-stressed cows. Better understanding of HS specific nutritional physiology and metabolic biochemistry of the dairy cattle will primarily help to devise practical interventions in this context. Proper assessment of the HS in cattle and thereby applying relevant cooling measures at dairy seems to be the basic mitigation approach. Score of the nutritional strategies be applied in the eve of HS should target supporting physiological responses of abatement and fulfilling the deficiencies possessed, such as water and minerals. Second line of abatement constitutes proper feeding, which could augment metabolic activities and synergizes energy support. The third line of supplemental supports should be directed towards modulating the metabolic (propionates, thiazolidinediones, dietary buffers, probiotics, and fermentates) and antioxidant responses (vitamins). Comprehensive understanding of the energetic metabolism dynamics under the impact of incremental heat load and complete outlook of pros and cons of the dietary ameliorating substances together with the discovery of the newer relevant supplementations constitutes the future avenues in this context.

...