Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
bioRxiv ; 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37905053

RESUMEN

Considering age is the greatest risk factor for many neurodegenerative diseases, aging, in particular aging of the immune system, is the most underappreciated and understudied contributing factor in the neurodegeneration field. Genetic variation around the LRRK2 gene affects risk of both familial and sporadic Parkinson's disease (PD). The leucine-rich repeat kinase 2 (LRRK2) protein has been implicated in peripheral immune signaling, however, the effects of an aging immune system on LRRK2 function have been neglected to be considered. We demonstrate here that the R1441C mutation induces a hyper-responsive phenotype in macrophages from young female mice, characterized by increased effector functions, including stimulation-dependent antigen presentation, cytokine release, phagocytosis, and lysosomal function. This is followed by age-acquired immune cell exhaustion in a Lrrk2-kinase-dependent manner. Immune-exhausted macrophages exhibit suppressed antigen presentation and hypophagocytosis, which is also demonstrated in myeloid cells from R1441C and Y1699C-PD patients. Our novel findings that LRRK2 mutations confer immunological advantage at a young age but may predispose the carrier to age-acquired immune exhaustion have significant implications for LRRK2 biology and therapeutic development. Indeed, LRRK2 has become an appealing target in PD, but our findings suggest that more research is required to understand the cell-type specific consequences and optimal timing of LRRK2-targeting therapeutics.

2.
Sci Transl Med ; 15(711): eabo1557, 2023 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-37647388

RESUMEN

Parkinson's disease (PD) is the most common neurodegenerative movement disorder, and neuroprotective or disease-modifying interventions remain elusive. High-throughput markers aimed at stratifying patients on the basis of shared etiology are required to ensure the success of disease-modifying therapies in clinical trials. Mitochondrial dysfunction plays a prominent role in the pathogenesis of PD. Previously, we found brain region-specific accumulation of mitochondrial DNA (mtDNA) damage in PD neuronal culture and animal models, as well as in human PD postmortem brain tissue. To investigate mtDNA damage as a potential blood-based marker for PD, we describe herein a PCR-based assay (Mito DNADX) that allows for the accurate real-time quantification of mtDNA damage in a scalable platform. We found that mtDNA damage was increased in peripheral blood mononuclear cells derived from patients with idiopathic PD and those harboring the PD-associated leucine-rich repeat kinase 2 (LRRK2) G2019S mutation in comparison with age-matched controls. In addition, mtDNA damage was elevated in non-disease-manifesting LRRK2 mutation carriers, demonstrating that mtDNA damage can occur irrespective of a PD diagnosis. We further established that Lrrk2 G2019S knock-in mice displayed increased mtDNA damage, whereas Lrrk2 knockout mice showed fewer mtDNA lesions in the ventral midbrain, compared with wild-type control mice. Furthermore, a small-molecule kinase inhibitor of LRRK2 mitigated mtDNA damage in a rotenone PD rat midbrain neuron model and in idiopathic PD patient-derived lymphoblastoid cell lines. Quantifying mtDNA damage using the Mito DNADX assay may have utility as a candidate marker of PD and for measuring the pharmacodynamic response to LRRK2 kinase inhibitors.


Asunto(s)
ADN Mitocondrial , Enfermedad de Parkinson , Humanos , Animales , Ratones , Ratas , ADN Mitocondrial/genética , Enfermedad de Parkinson/genética , Leucocitos Mononucleares , Mitocondrias , Daño del ADN
4.
Hum Genomics ; 17(1): 55, 2023 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-37330543

RESUMEN

Early-onset dementia (EOD), with symptom onset before age 65, has a strong genetic burden. Due to genetic and clinical overlaps between different types of dementia, whole-exome sequencing (WES) has emerged as an appropriate screening method for diagnostic testing and novel gene-finding approaches. We performed WES and C9orf72 repeat testing in 60 well-defined Austrian EOD patients. Seven patients (12%) carried likely disease-causing variants in monogenic genes, PSEN1, MAPT, APP, and GRN. Five patients (8%) were APOE4 homozygote carriers. Definite and possible risk variants were detected in the genes TREM2, SORL1, ABCA7 and TBK1. In an explorative approach, we cross-checked rare gene variants in our cohort with a curated neurodegeneration candidate gene list and identified DCTN1, MAPK8IP3, LRRK2, VPS13C and BACE1 as promising candidate genes. Conclusively, 12 cases (20%) carried variants relevant to patient counseling, comparable to previously reported studies, and can thus be considered genetically resolved. Reduced penetrance, oligogenic inheritance and not yet identified high-risk genes might explain the high number of unresolved cases. To address this issue, we provide complete genetic and phenotypic information (uploaded to the European Genome-phenome Archive), enabling other researchers to cross-check variants. Thereby, we hope to increase the chance of independently finding the same gene/variant-hit in other well-defined EOD patient cohorts, thus confirming new genetic risk variants or variant combinations.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Anciano , Enfermedad de Alzheimer/genética , Secretasas de la Proteína Precursora del Amiloide/genética , Predisposición Genética a la Enfermedad , Austria , Ácido Aspártico Endopeptidasas/genética , Pruebas Genéticas , Mutación , Proteínas Relacionadas con Receptor de LDL/genética , Proteínas de Transporte de Membrana/genética
5.
NPJ Parkinsons Dis ; 9(1): 52, 2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37015928

RESUMEN

Elevated urine bis(monoacylglycerol)phosphate (BMP) levels have been found in gain-of-kinase function LRRK2 G2019S mutation carriers. Here, we have expanded urine BMP analysis to other Parkinson's disease (PD) associated mutations and found them to be consistently elevated in carriers of LRRK2 G2019S and R1441G/C as well as VPS35 D620N mutations. Urine BMP levels are promising biomarkers for patient stratification and potentially target engagement in clinical trials of emerging targeted PD therapies.

7.
Br J Neurosurg ; 37(4): 637-640, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30450991

RESUMEN

A 39-year-old lady with worsening intermittent diplopia and headaches was diagnosed with a WHO Grade I Meningothelial Meningioma with highly unusual perineural spread on imaging, making this the first reported case of this behaviour. Complete surgical resection was deemed too great a risk and the patient remains under observation. The process of perineural spread is not restricted to more aggressive brain tumours.


Asunto(s)
Neoplasias Encefálicas , Neoplasias Meníngeas , Meningioma , Femenino , Humanos , Adulto , Meningioma/diagnóstico por imagen , Meningioma/cirugía , Neoplasias Meníngeas/diagnóstico por imagen , Neoplasias Meníngeas/cirugía , Imagen por Resonancia Magnética
9.
Biochem J ; 479(17): 1759-1783, 2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-35950872

RESUMEN

Mutations enhancing the kinase activity of leucine-rich repeat kinase-2 (LRRK2) cause Parkinson's disease (PD) and therapies that reduce LRRK2 kinase activity are being tested in clinical trials. Numerous rare variants of unknown clinical significance have been reported, but how the vast majority impact on LRRK2 function is unknown. Here, we investigate 100 LRRK2 variants linked to PD, including previously described pathogenic mutations. We identify 23 LRRK2 variants that robustly stimulate kinase activity, including variants within the N-terminal non-catalytic regions (ARM (E334K, A419V), ANK (R767H), LRR (R1067Q, R1325Q)), as well as variants predicted to destabilize the ROC:CORB interface (ROC (A1442P, V1447M), CORA (R1628P) CORB (S1761R, L1795F)) and COR:COR dimer interface (CORB (R1728H/L)). Most activating variants decrease LRRK2 biomarker site phosphorylation (pSer935/pSer955/pSer973), consistent with the notion that the active kinase conformation blocks their phosphorylation. We conclude that the impact of variants on kinase activity is best evaluated by deploying a cellular assay of LRRK2-dependent Rab10 substrate phosphorylation, compared with a biochemical kinase assay, as only a minority of activating variants (CORB (Y1699C, R1728H/L, S1761R) and kinase (G2019S, I2020T, T2031S)), enhance in vitro kinase activity of immunoprecipitated LRRK2. Twelve variants including several that activate LRRK2 and have been linked to PD, suppress microtubule association in the presence of a Type I kinase inhibitor (ARM (M712V), LRR (R1320S), ROC (A1442P, K1468E, S1508R), CORA (A1589S), CORB (Y1699C, R1728H/L) and WD40 (R2143M, S2350I, G2385R)). Our findings will stimulate work to better understand the mechanisms by which variants impact biology and provide rationale for variant carrier inclusion or exclusion in ongoing and future LRRK2 inhibitor clinical trials.


Asunto(s)
Enfermedad de Parkinson , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Microtúbulos/metabolismo , Mutación , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Fosforilación , Unión Proteica
10.
J Am Chem Soc ; 144(37): 16930-16952, 2022 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-36007011

RESUMEN

Leucine-rich repeat kinase 2 (LRRK2) is one of the most promising targets for Parkinson's disease. LRRK2-targeting strategies have primarily focused on type 1 kinase inhibitors, which, however, have limitations as the inhibited protein can interfere with natural mechanisms, which could lead to undesirable side effects. Herein, we report the development of LRRK2 proteolysis targeting chimeras (PROTACs), culminating in the discovery of degrader XL01126, as an alternative LRRK2-targeting strategy. Initial designs and screens of PROTACs based on ligands for E3 ligases von Hippel-Lindau (VHL), Cereblon (CRBN), and cellular inhibitor of apoptosis (cIAP) identified the best degraders containing thioether-conjugated VHL ligand VH101. A second round of medicinal chemistry exploration led to qualifying XL01126 as a fast and potent degrader of LRRK2 in multiple cell lines, with DC50 values within 15-72 nM, Dmax values ranging from 82 to 90%, and degradation half-lives spanning from 0.6 to 2.4 h. XL01126 exhibits high cell permeability and forms a positively cooperative ternary complex with VHL and LRRK2 (α = 5.7), which compensates for a substantial loss of binary binding affinities to VHL and LRRK2, underscoring its strong degradation performance in cells. Remarkably, XL01126 is orally bioavailable (F = 15%) and can penetrate the blood-brain barrier after either oral or parenteral dosing in mice. Taken together, these experiments qualify XL01126 as a suitable degrader probe to study the noncatalytic and scaffolding functions of LRRK2 in vitro and in vivo and offer an attractive starting point for future drug development.


Asunto(s)
Barrera Hematoencefálica , Ubiquitina-Proteína Ligasas , Animales , Ratones , Barrera Hematoencefálica/metabolismo , Leucina , Ligandos , Inhibidores de Proteínas Quinasas/farmacología , Proteolisis , Sulfuros , Ubiquitina-Proteína Ligasas/metabolismo
11.
Commun Biol ; 5(1): 670, 2022 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-35794204

RESUMEN

GBA variants carriers are at increased risk of Parkinson's disease (PD) and Lewy body dementia (LBD). The presence of pseudogene GBAP1 predisposes to structural variants, complicating genetic analysis. We present two methods to resolve recombinant alleles and other variants in GBA: Gauchian, a tool for short-read, whole-genome sequencing data analysis, and Oxford Nanopore sequencing after PCR enrichment. Both methods were concordant for 42 samples carrying a range of recombinants and GBAP1-related mutations, and Gauchian outperformed the GATK Best Practices pipeline. Applying Gauchian to sequencing of over 10,000 individuals shows that copy number variants (CNVs) spanning GBAP1 are relatively common in Africans. CNV frequencies in PD and LBD are similar to controls. Gains may coexist with other mutations in patients, and a modifying effect cannot be excluded. Gauchian detects more GBA variants in LBD than PD, especially severe ones. These findings highlight the importance of accurate GBA analysis in these patients.


Asunto(s)
Enfermedad por Cuerpos de Lewy , Enfermedad de Parkinson , Alelos , Glucosilceramidasa/genética , Heterocigoto , Humanos , Enfermedad por Cuerpos de Lewy/genética , Enfermedad de Parkinson/genética
12.
Med Genet ; 34(2): 103-116, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38835904

RESUMEN

Mutations in Leucine-rich repeat kinase 2 (LRRK2) are the most frequent cause of dominantly inherited Parkinson's disease (PD). LRRK2 mutations, among which p.G2019S is the most frequent, are inherited with reduced penetrance. Interestingly, the disease risk associated with LRRK2 G2019S can vary dramatically depending on the ethnic background of the carrier. While this would suggest a genetic component in the definition of LRRK2-PD penetrance, only few variants have been shown to modify the age at onset of patients harbouring LRRK2 mutations, and the exact cellular pathways controlling the transition from a healthy to a diseased state currently remain elusive. In light of this knowledge gap, recent studies also explored environmental and lifestyle factors as potential modifiers of LRRK2-PD. In this article, we (i) describe the clinical characteristics of LRRK2 mutation carriers, (ii) review known genes linked to LRRK2-PD onset and (iii) summarize the cellular functions of LRRK2 with particular emphasis on potential penetrance-related molecular mechanisms. This section covers LRRK2's involvement in Rab GTPase and immune signalling as well as in the regulation of mitochondrial homeostasis and dynamics. Additionally, we explored the literature with regard to (iv) lifestyle and (v) environmental factors that may influence the penetrance of LRRK2 mutations, with a view towards further exposomics studies. Finally, based on this comprehensive overview, we propose potential future in vivo, in vitro and in silico studies that could provide a better understanding of the processes triggering PD in individuals with LRRK2 mutations.

13.
Front Neurol ; 12: 710572, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34475849

RESUMEN

Background: Pathogenic variants in the Leucine-rich repeat kinase 2 (LRRK2) gene are the most common known monogenic cause of Parkinson's disease (PD). LRRK2-linked PD is clinically indistinguishable from idiopathic PD and inherited in an autosomal dominant fashion with reduced penetrance and variable expressivity that differ across ethnicities and geographic regions. Objective: To systematically assess clinical signs and symptoms including non-motor features, comorbidities, medication and environmental factors in PD patients, unaffected LRRK2 pathogenic variant carriers, and controls. A further focus is to enable the investigation of modifiers of penetrance and expressivity of LRRK2 pathogenic variants using genetic and environmental data. Methods: Eligible participants are invited for a personal or online examination which comprises completion of a detailed eCRF and collection of blood samples (to obtain DNA, RNA, serum/plasma, immune cells), urine as well as household dust. We plan to enroll 1,000 participants internationally: 300 with LRRK2-linked PD, 200 with LRRK2 pathogenic variants but without PD, 100 PD patients with pathogenic variants in the GBA or PRKN genes, 200 patients with idiopathic PD, and 200 healthy persons without pathogenic variants. Results: The eCRF consists of an investigator-rated (1 h) and a self-rated (1.5 h) part. The first part includes the Movement Disorder Society Unified Parkinson's Disease Rating, Hoehn &Yahr, and Schwab & England Scales, the Brief Smell Identification Test, and Montreal Cognitive Assessment. The self-rating part consists of a PD risk factor, food frequency, autonomic dysfunction, and quality of life questionnaires, the Pittsburgh Sleep Quality Inventory, and the Epworth Sleepiness as well as the Hospital Anxiety and Depression Scales. The first 15 centers have been initiated and the first 150 participants enrolled (as of March 25th, 2021). Conclusions: LIPAD is a large-scale international scientific effort focusing on deep phenotyping of LRRK2-linked PD and healthy pathogenic variant carriers, including the comparison with additional relatively frequent genetic forms of PD, with a future perspective to identify genetic and environmental modifiers of penetrance and expressivity Clinical Trial Registration:ClinicalTrials.gov, NCT04214509.

14.
Acta Neuropathol ; 142(3): 475-494, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34125248

RESUMEN

Heterozygous gain-of-kinase function variants in LRRK2 (leucine-rich repeat kinase 2) cause 1-2% of all cases of Parkinson's disease (PD) albeit with incomplete and age-dependent penetrance. All pathogenic LRRK2 mutations reside within the two catalytic domains of LRRK2-either in its kinase domain (e.g. G2019S) with modest effect or its ROC-COR GTPase domain (e.g. R1441G/H) with large effect on LRRK2 kinase activity. We have previously reported assays to interrogate LRRK2 kinase pathway activity in human bio-samples measuring phosphorylation of its endogenous substrate Rab10, that mirrors LRRK2 kinase activation status. Here, we isolated neutrophils from fresh peripheral blood from 101 participants including 42 LRRK2 mutation carriers (21 with the G2019S and 21 with the R1441G mutations), 27 patients with idiopathic PD, and 32 controls. Using a dual approach, LRRK2 dependent Rab10 phosphorylation at Threonine 73 (pRab10Thr73) was measured by quantitative multiplexed immunoblotting for pRab10Thr73/total Rab10 as well as targeted mass-spectrometry for absolute pRab10Thr73 occupancy. We found a significant over fourfold increase in pRab10Thr73 phosphorylation in carriers of the LRRK2 R1441G mutation irrespective of clinical disease status. The effect of the LRRK2 G2019S mutation did not reach statistical significance. Furthermore, we show that LRRK2 phosphorylation at Serine 935 is not a marker for LRRK2 kinase activity in human neutrophils. When analysing pRab10Thr73 phosphorylation in post-mortem brain samples, we observed overall high variability irrespective of clinical and LRRK2 mutation status and attributed this mainly to the adverse effect of the peri- and post-mortem period on the stability of posttranslational modifications such as protein phosphorylation. Overall, in vivo LRRK2 dependent pRab10Thr73 phosphorylation in human peripheral blood neutrophils is a specific, robust and promising biomarker for significant LRRK2 kinase hyperactivation, as with the LRRK2 R1441G mutation. Additional readouts and/or assays may be needed to increase sensitivity to detect modest LRRK2 kinase activation, as with the LRRK2 G2019S mutation. Our assays could be useful for patient stratification and target engagement studies for LRRK2 kinase inhibitors.


Asunto(s)
Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Mutación/genética , Neutrófilos/metabolismo , Proteínas de Unión al GTP rab/genética , Adulto , Anciano , Anciano de 80 o más Años , Autopsia , Biomarcadores , Femenino , Heterocigoto , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/antagonistas & inhibidores , Masculino , Persona de Mediana Edad , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , Procesamiento Proteico-Postraduccional
15.
Acta Neuropathol ; 142(1): 117-137, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33913039

RESUMEN

Loss-of-function variants in the low-density lipoprotein receptor-related protein 10 (LRP10) gene have been associated with autosomal-dominant Parkinson's disease (PD), PD dementia, and dementia with Lewy bodies (DLB). Moreover, LRP10 variants have been found in individuals diagnosed with progressive supranuclear palsy and amyotrophic lateral sclerosis. Despite this genetic evidence, little is known about the expression and function of LRP10 protein in the human brain under physiological or pathological conditions. To better understand how LRP10 variants lead to neurodegeneration, we first performed an in-depth characterisation of LRP10 expression in post-mortem brains and human-induced pluripotent stem cell (iPSC)-derived astrocytes and neurons from control subjects. In adult human brain, LRP10 is mainly expressed in astrocytes and neurovasculature but undetectable in neurons. Similarly, LRP10 is highly expressed in iPSC-derived astrocytes but cannot be observed in iPSC-derived neurons. In astrocytes, LRP10 is present at trans-Golgi network, plasma membrane, retromer, and early endosomes. Interestingly, LRP10 also partially co-localises and interacts with sortilin-related receptor 1 (SORL1). Furthermore, although LRP10 expression and localisation in the substantia nigra of most idiopathic PD and DLB patients and LRP10 variant carriers diagnosed with PD or DLB appeared unchanged compared to control subjects, significantly enlarged LRP10-positive vesicles were detected in a patient carrying the LRP10 p.Arg235Cys variant. Last, LRP10 was detected in Lewy bodies (LB) at late maturation stages in brains from idiopathic PD and DLB patients and in LRP10 variant carriers. In conclusion, high LRP10 expression in non-neuronal cells and undetectable levels in neurons of control subjects indicate that LRP10-mediated pathogenicity is initiated via cell non-autonomous mechanisms, potentially involving the interaction of LRP10 with SORL1 in vesicle trafficking pathways. Together with the specific pattern of LRP10 incorporation into mature LBs, these data support an important mechanistic role for disturbed vesicle trafficking and loss of LRP10 function in neurodegenerative diseases.


Asunto(s)
Encéfalo/metabolismo , Proteínas Relacionadas con Receptor de LDL/genética , Cuerpos de Lewy/metabolismo , Enfermedad por Cuerpos de Lewy/metabolismo , Proteínas de Transporte de Membrana/genética , Enfermedad de Parkinson/metabolismo , Adulto , Anciano , Astrocitos/metabolismo , Astrocitos/trasplante , Encéfalo/citología , Encéfalo/patología , Variación Genética , Humanos , Células Madre Pluripotentes Inducidas/trasplante , Cuerpos de Lewy/patología , Enfermedad por Cuerpos de Lewy/patología , Persona de Mediana Edad , Enfermedades Neurodegenerativas/patología , Neuronas/trasplante , Enfermedad de Parkinson/patología
16.
Biochem J ; 478(2): 299-326, 2021 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-33367571

RESUMEN

Mutations that increase the protein kinase activity of LRRK2 are one of the most common causes of familial Parkinson's disease. LRRK2 phosphorylates a subset of Rab GTPases within their Switch-II motif, impacting interaction with effectors. We describe and validate a new, multiplexed targeted mass spectrometry assay to quantify endogenous levels of LRRK2-phosphorylated Rab substrates (Rab1, Rab3, Rab8, Rab10, Rab35 and Rab43) as well as total levels of Rabs, LRRK2 and LRRK2-phosphorylated at the Ser910 and Ser935 biomarker sites. Exploiting this assay, we quantify for the first time the relative levels of each of the pRab proteins in different cells (mouse embryonic fibroblasts, human neutrophils) and mouse tissues (brain, kidney, lung and spleen). We define how these components are impacted by Parkinson's pathogenic mutations (LRRK2[R1441C] and VPS35[D620N]) and LRRK2 inhibitors. We find that the VPS35[D620N], but not LRRK2[R1441C] mutation, enhances Rab1 phosphorylation in a manner blocked by administration of an LRRK2 inhibitor, providing the first evidence that endogenous Rab1 is a physiological substrate for LRRK2. We exploit this assay to demonstrate that in Parkinson's patients with VPS35[D620N] mutations, phosphorylation of multiple Rab proteins (Rab1, Rab3, Rab8, Rab10 and Rab43) is elevated. We highlight the benefits of this assay over immunoblotting approaches currently deployed to assess LRRK2 Rab signalling pathway.


Asunto(s)
Biomarcadores/análisis , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Espectrometría de Masas en Tándem/métodos , Proteínas de Unión al GTP rab/metabolismo , Animales , Biomarcadores/metabolismo , Fibroblastos/metabolismo , Humanos , Inmunoprecipitación/métodos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/antagonistas & inhibidores , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Límite de Detección , Ratones Mutantes , Mutación , Enfermedad de Parkinson/genética , Fosforilación , Serina/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
17.
Mol Cell Proteomics ; 19(9): 1546-1560, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32601174

RESUMEN

Pathogenic mutations in the Leucine-rich repeat kinase 2 (LRRK2) are the predominant genetic cause of Parkinson's disease (PD). They increase its activity, resulting in augmented Rab10-Thr73 phosphorylation and conversely, LRRK2 inhibition decreases pRab10 levels. Currently, there is no assay to quantify pRab10 levels for drug target engagement or patient stratification. To meet this challenge, we developed an high accuracy and sensitivity targeted mass spectrometry (MS)-based assay for determining Rab10-Thr73 phosphorylation stoichiometry in human samples. It uses synthetic stable isotope-labeled (SIL) analogues for both phosphorylated and nonphosphorylated tryptic peptides surrounding Rab10-Thr73 to directly derive the percentage of Rab10 phosphorylation from attomole amounts of the endogenous phosphopeptide. The SIL and the endogenous phosphopeptides are separately admitted into an Orbitrap analyzer with the appropriate injection times. We test the reproducibility of our assay by determining Rab10-Thr73 phosphorylation stoichiometry in neutrophils of LRRK2 mutation carriers before and after LRRK2 inhibition. Compared with healthy controls, the PD predisposing mutation carriers LRRK2 G2019S and VPS35 D620N display 1.9-fold and 3.7-fold increased pRab10 levels, respectively. Our generic MS-based assay further establishes the relevance of pRab10 as a prognostic PD marker and is a powerful tool for determining LRRK2 inhibitor efficacy and for stratifying PD patients for LRRK2 inhibitor treatment.


Asunto(s)
Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/antagonistas & inhibidores , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/sangre , Neutrófilos/metabolismo , Enfermedad de Parkinson/sangre , Inhibidores de Proteínas Quinasas/farmacología , Proteoma/metabolismo , Proteínas de Unión al GTP rab/sangre , Cromatografía Liquida , Humanos , Inmunoprecipitación , Marcaje Isotópico , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Mutación , Enfermedad de Parkinson/genética , Fosforilación , Proteoma/genética , Reproducibilidad de los Resultados , Espectrometría de Masas en Tándem
18.
J Vis Exp ; (157)2020 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-32250352

RESUMEN

The leucine rich repeat kinase 2 (LRRK2) is the most frequently mutated gene in hereditary Parkinson' disease (PD) and all pathogenic LRRK2 mutations result in hyperactivation of its kinase function. Here, we describe an easy and robust assay to quantify LRRK2 kinase pathway activity in human peripheral blood neutrophils by measuring LRRK2-controlled phosphorylation of one of its physiological substrates, Rab10 at threonine 73. The immunoblotting analysis described requires a fully selective and phosphospecific antibody that recognizes the Rab10 Thr73 epitope phosphorylated by LRRK2, such as the MJFF-pRab10 rabbit monoclonal antibody. It uses human peripheral blood neutrophils, because peripheral blood is easily accessible and neutrophils are an abundant and homogenous constituent. Importantly, neutrophils express relatively high levels of both LRRK2 and Rab10. A potential drawback of neutrophils is their high intrinsic serine protease activity, which necessitates the use of very potent protease inhibitors such as the organophosphorus neurotoxin diisopropylfluorophosphate (DIFP) as part of the lysis buffer. Nevertheless, neutrophils are a valuable resource for research into LRRK2 kinase pathway activity in vivo and should be considered for inclusion into PD biorepository collections.


Asunto(s)
Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Neutrófilos/metabolismo , Enfermedad de Parkinson/genética , Proteínas de Unión al GTP rab/genética , Humanos , Mutación , Fosforilación
19.
Biochem J ; 475(11): 1861-1883, 2018 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-29743203

RESUMEN

Missense mutations in the LRRK2 (Leucine-rich repeat protein kinase-2) and VPS35 genes result in autosomal dominant Parkinson's disease. The VPS35 gene encodes for the cargo-binding component of the retromer complex, while LRRK2 modulates vesicular trafficking by phosphorylating a subgroup of Rab proteins. Pathogenic mutations in LRRK2 increase its kinase activity. It is not known how the only thus far described pathogenic VPS35 mutation, [p.D620N] exerts its effects. We reveal that the VPS35[D620N] knock-in mutation strikingly elevates LRRK2-mediated phosphorylation of Rab8A, Rab10, and Rab12 in mouse embryonic fibroblasts. The VPS35[D620N] mutation also increases Rab10 phosphorylation in mouse tissues (the lung, kidney, spleen, and brain). Furthermore, LRRK2-mediated Rab10 phosphorylation is increased in neutrophils as well as monocytes isolated from three Parkinson's patients with a heterozygous VPS35[D620N] mutation compared with healthy donors and idiopathic Parkinson's patients. LRRK2-mediated Rab10 phosphorylation is significantly suppressed by knock-out or knock-down of VPS35 in wild-type, LRRK2[R1441C], or VPS35[D620N] cells. Finally, VPS35[D620N] mutation promotes Rab10 phosphorylation more potently than LRRK2 pathogenic mutations. Available data suggest that Parkinson's patients with VPS35[D620N] develop the disease at a younger age than those with LRRK2 mutations. Our observations indicate that VPS35 controls LRRK2 activity and that the VPS35[D620N] mutation results in a gain of function, potentially causing PD through hyperactivation of the LRRK2 kinase. Our findings suggest that it may be possible to elaborate compounds that target the retromer complex to suppress LRRK2 activity. Moreover, patients with VPS35[D620N] associated Parkinson's might benefit from LRRK2 inhibitor treatment that have entered clinical trials in humans.


Asunto(s)
Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Enfermedad de Parkinson/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Unión al GTP rab/metabolismo , Animales , Técnicas de Sustitución del Gen , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Ratones , Ratones Endogámicos C57BL , Mutación Missense , Enfermedad de Parkinson/genética , Fosforilación , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Unión al GTP rab/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA