Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 10 de 10
1.
Trop Anim Health Prod ; 56(4): 149, 2024 May 01.
Article En | MEDLINE | ID: mdl-38691179

Egg preference as a source of protein also provides beneficial fatty acids, vital for human consumption. However, rich in lipid products are prone to oxidative damage. The study aims to determine the effect of supplementing biogenic selenium (Se) from Stenotrophomonas maltophilia, ADS18 (ADS18) in laying hens' diet on yolk lipid oxidation status (MDA), beta-carotene (ß-carotene) content, cholesterol, fatty acids, Se, and vitamin E (VE) level. A total of one hundred and twenty (120) laying hens of Lohmann Brown strains aged 50 weeks, weighing 1500 to 2000 g were reared individually in A-shape two-tier stainless-steel cages sized 30 cm x 50 cm x 40 cm (width, depth height). The hens were randomly allotted into four treatments with six replications in a complete randomised design for the period of 12 weeks. The basal diet contains 100 mg/kg VE. Treatment diets consist of basal diet as control, SS containing 0.3 mg/kg sodium selenite, Se-yeast containing 0.3 mg/kg selenised yeast, and VADS18 containing 0.3 mg/kg of ADS18. Forty-eight eggs were collected and freeze-dried biweekly for analysis. The results of the present study showed that hens supplemented ADS18 had significantly (P < 0.05) lower MDA and cholesterol levels while their egg yolks had higher levels of Se and mono-unsaturated fatty acids (MUFA). The control group had significantly (P < 0.05) higher saturated fatty acid (SFA) contents than the VE and dietary Se-supplemented groups, while the ADS18 group had the lowest SFA contents. Conversely, in comparison to the inorganic and control groups, the VE content of the egg yolk was significantly (P < 0.05) higher in organic Se-supplemented (Se-yeast and VADS18) groups. Hens with SS supplementation had significantly (P < 0.05) higher egg yolk ß-carotene content. When compared to other treatment groups, the control group had higher (P < 0.05) polyunsaturated fatty acids (PUFA) content. The ADS18 is therefore deemed comparable to other Se sources. To prevent Se toxicity, however, a better understanding of the levels of ADS18 incorporation in poultry diets is required.


Animal Feed , Chickens , Diet , Dietary Supplements , Egg Yolk , Selenium , Vitamin E , Animals , Female , Dietary Supplements/analysis , Animal Feed/analysis , Selenium/administration & dosage , Selenium/analysis , Egg Yolk/chemistry , Vitamin E/administration & dosage , Vitamin E/analysis , Diet/veterinary , Random Allocation , Fatty Acids/analysis , Fatty Acids/metabolism , Lipids/analysis , beta Carotene/analysis , beta Carotene/administration & dosage , beta Carotene/metabolism
2.
Trop Anim Health Prod ; 55(2): 90, 2023 Feb 20.
Article En | MEDLINE | ID: mdl-36806991

The effects of supplementing different dietary selenium (Se) sources on intestinal histomorphology, caecal bacterial proliferation, and caecum short-chain fatty acid in layer chickens were studied. A total of 120 of 54-week-old Lohman Brown Classic laying hens were subjected to four dietary treatments: control group with no Se supplementation (T1), 0.3 mg/kg of sodium selenite (T2), 0.3 mg/kg of selenium yeast (T3), and 0.3 mg/kg of bacterial Se (Stenotrophomonas maltophilia, ADS18) (T4). All treatments were also supplemented with 250 mg/kg of vitamin E. Results showed significantly (p < 0.05) higher villus height in different small intestine parts in hens fed with diets containing organic Se sources (T3 and T4), as compared to inorganic sources (T2) and control (T1). A greater crypt depth was observed for the T1 group, as compared to T3 and T4 groups. The total bacterial populations of Bifidobacteria spp. and Lactobacilli spp. were significantly increased (p < 0.05), and tEscherichia coli population was significantly decreased (p < 0.05) in T3 and T4 groups. No effect on the total caecal short-chain fatty acid (SCFAs) content was observed. However, there was a significant increase (21.5%) of the butyric acid content in T4 group. In conclusion, organic Se supplementation, particularly bacterial organic Se, enhances intestinal histomorphology, increases the beneficial caecal bacterial proliferation, and increases butyric acid content.


Selenium , Animals , Female , Selenium/pharmacology , Vitamin E , Chickens , Butyric Acid , Dietary Supplements , Diet/veterinary , Saccharomyces cerevisiae , Cecum/microbiology , Cell Proliferation , Animal Feed/analysis
3.
BMC Vet Res ; 17(1): 281, 2021 Aug 21.
Article En | MEDLINE | ID: mdl-34419016

BACKGROUND: The oviduct of a hen provides a conducive environment for egg formation, which needs a large amount of mineral elements from the blood via trans-epithelial permeability. Eggshell is the calcified layer on the outside of an egg that provides protection and is critical for egg quality. However, little is known about the genes or proteins involved in eggshell formation, and their relationship to dietary microminerals. We hypothesized that dietary selenium supplementation in chickens will influence genes involved in eggshell biomineralization, and improve laying hen antioxidant capacity. The objective of this research was to investigate how organic and inorganic dietary selenium supplementation affected mRNA expression of shell gland genes involved in eggshell biomineralization, and selenoproteins gene expression in Lohman Brown-Classic laying hens. RESULTS: Shell gland (Uterus) and liver tissue samples were collected from hens during the active growth phase of calcification (15-20 h post-ovulation) for RT-PCR analysis. In the oviduct (shell gland and magnum) and liver of laying hens, the relative expression of functional eggshell and hepatic selenoproteins genes was investigated. Results of qPCR confirmed the higher (p < 0.05) mRNA expression of OC-17 and OC-116 in shell gland of organic Se hen compared to inorganic and basal diet treatments. Similarly, dietary Se treatments affected the mRNA expression of OCX-32 and OCX-36 in the shell gland of laying hens. In the magnum, mRNA expression of OC-17 was significantly (p < 0.05) higher in hens fed-bacterial organic, while OC-116 mRNA expression was down-regulated in dietary Se supplemented groups compared to non-Se supplemented hens. Moreover, when compared to sodium selenite, only ADS18 bacterial Se showed significantly (p < 0.05) higher mRNA levels in GPX1, GPX4, DIO1, DIO2 and SELW1, while Se-yeast showed significantly (p < 0.05) higher mRNA levels in TXNRD1 than the non-Se group. CONCLUSIONS: Dietary Se supplementation especially that from a bacterial organic source, improved shell gland and hepatic selenoproteins gene expression in laying hens, indicating that it could be used as a viable alternative source of Se in laying hens. The findings could suggest that organic Se upregulation of shell gland genes and hepatic selenoproteins in laying hens is efficient.


Biomineralization/genetics , Diet/veterinary , Oviducts/metabolism , Selenium/administration & dosage , Animal Feed/analysis , Animals , Antioxidants/analysis , Chickens , Egg Shell/chemistry , Female , Gene Expression , Liver , Selenium/chemistry , Selenoproteins/metabolism
4.
BMC Vet Res ; 16(1): 365, 2020 Sep 29.
Article En | MEDLINE | ID: mdl-32993790

BACKGROUND: Several studies indicated that dietary organic selenium (Se) usually absorbed better than an inorganic source, with high retention and bioavailability. Dietary Se as an antioxidant element affects the immune system and hematological status in animals. Therefore, the aim of this study was to evaluate the effect of dietary supplementation of bacterial selenium as an organic source on hematology, immunity response, selenium retention, and gut morphology in broiler chickens. RESULTS: The present results revealed that supplementation of inorganic Se was associated with the lowest level of RBC, HB, and PCV with significant difference than ADS18-Se. In the starter stage, both T2 and T5 were associated with the significantly highest IgG level compared to the basal diet, while all supplemented groups showed higher IgM levels compared to the control group. In the finisher phase, all Se supplemented groups showed significant (P ˂ 0.05) increases in IgG, IgA, and IgM levels compared to T1. Birds fed bacterial-Se showed high intestinal villus height and better Se retention more than sodium selenite. The organic selenium of ADS18 had a superior action in improving Se retention compared to ADS1 and ADS2 bacterial Se. CONCLUSIONS: Bacterial organic Se had a beneficial effect on the villus height of small intestine led to high Se absorption and retention. Thus, it caused a better effect of Se on hematological parameters and immunity response.


Chickens/physiology , Diet/veterinary , Selenium/administration & dosage , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Animals , Bacteria/chemistry , Chickens/immunology , Erythrocyte Count , Female , Hematocrit , Hemoglobins/analysis , Immunity/drug effects , Intestines/drug effects , Selenium/chemistry , Selenium/metabolism , Sodium Selenite
5.
BMC Vet Res ; 15(1): 233, 2019 Jul 08.
Article En | MEDLINE | ID: mdl-31286932

BACKGROUND: The increasing costs of feed has subsequently increased the costs of production of livestock, thereby decreasing the profit margin of this sector. The utilization of agro-industrial by-products has to some extent substitute some of the corn grains and soyabean meal, commonly used in animal feeds. In Malaysia, palm kernel cake (PKC) is a by-product of the oil palm industry and is frequently used to supply both crude protein (14-16% CP) and energy (11 MJ/kg) in ruminants. The energy and protein content are adequate for maintenance in the majority of ruminants. However, highly available energy supplementation is known to improve growth performance and protein deposition. This study was carried out to determine the effect on the quality of meat and fatty acid composition of the semitendinosus (ST), supraspinatus (SS), and longissimus lumborum (LL) muscles of Dorper lambs by including corn as an energy source in a basal diet of PKC urea-treated rice straw. RESULTS: The results show that the LL muscle-drip loss was greater in animals supplemented with 5% corn compared to the other groups. Higher pH values of SS and LL muscles were observed in animals supplemented with 5 and 10% corn. Furthermore, the L* value of ST muscle was increased in lambs fed on 5% corn while, reduced in those fed on 0% corn, but the a* and b* values were not significantly different in the treatment groups. The fatty acid composition of the SS muscles showed that lambs fed on 10% corn had higher levels of sum PUFA n-3 compared to those fed on 0% corn. The concentration of C18:1trans11 and CLA c12 t10 in ST muscle from the lambs fed on supplemented diets were higher than those of the controls. CONCLUSION: This study has concluded the supplementation of corn as a source of energy into a PKC urea-treated rice straw-based diet increased the PUFA concentrations of muscles as compared to control groups.


Animal Nutritional Physiological Phenomena , Diet/veterinary , Fatty Acids/analysis , Meat/standards , Muscle, Skeletal/chemistry , Oryza/chemistry , Zea mays/metabolism , Animal Feed/standards , Animals , Malaysia , Muscle, Skeletal/metabolism , Sheep , Urea/chemistry
6.
BMC Vet Res ; 14(1): 344, 2018 Nov 14.
Article En | MEDLINE | ID: mdl-30558590

BACKGROUND: The effects of the dietary oils with differing fatty acid profiles on rumen fermentation, microbial population, and digestibility in goats were investigated. In Experiment I, rumen microbial population and fermentation profiles were evaluated on 16 fistulated male goats that were randomly assigned to four treatment groups: i) control (CNT), ii) olive oil (OL), iii) palm olein oil (PO), and iv) sunflower oil (SF). In Experiment II, another group of 16 male goats was randomly assigned to the same dietary treatments for digestibility determination. RESULTS: Rumen ammonia concentration was higher in CNT group compared to treatment groups receiving dietary oils. The total VFA and acetate concentration were higher in SF and OL groups, which showed that they were significantly affected by the dietary treatments. There were no differences in total microbial population. However, fibre degrading bacteria populations were affected by the interaction between treatment and day of sampling. Significant differences were observed in apparent digestibility of crude protein and ether extract of treatment groups containing dietary oils compared to the control group. CONCLUSIONS: This study demonstrated that supplementation of different dietary oils containing different fatty acid profiles improved rumen fermentation by reducing ammonia concentration and increasing total VFA concentration, altering fibre degrading bacteria population, and improving apparent digestibility of crude protein and ether extract.


Diet/veterinary , Dietary Fats, Unsaturated/metabolism , Digestion , Fatty Acids/metabolism , Fermentation , Gastrointestinal Microbiome , Goats/metabolism , Animals , Male , Random Allocation , Rumen/metabolism , Rumen/microbiology
7.
BMC Vet Res ; 14(1): 249, 2018 Aug 24.
Article En | MEDLINE | ID: mdl-30143038

BACKGROUND: Selenium (Se) and vitamin E (Vit E) can act synergistically and affect biological processes, mainly antioxidant and immunity. The use of excess dietary Vit E and Se in animals' feed could enhance immune response and induce disease resistance. Moreover, different Se sources may provide different alterations in the immune system. Accordingly, the aim of the current study was to assess the impact of dietary supplementation of Vit E, inorganic Se (sodium selenite, SS), bacterial organic Se of ADS18, and their different combinations on the plasma immunoglobulins, ceacum microbial population, and splenic cytokines gene expression in broiler chickens. RESULTS: Present results showed that, Se and Vit E synergistic effect was clear in plasma IgM level at day 42 and in splenic cytokines expression (TNF-α, IFN-γ, IL-2, IL-10). The combination of 0.3 mg/kg ADS18-Se with 100 mg/kg Vit E showed the highest IgM level compared to Vit E- SS complex. The combination of either SS or ADS18-Se with Vit E had no significant effect on IFN- γ and IL-10 compared to Vit E alone, while Vit E alone showed the significantly lowest TNF-α compared to the Se combinations. Supplementation of 100 mg/kg Vit E had no effect on microbial population except a slight reduction in Salmonella spp. The main effect of Se sources was that both sources increased the day 42 IgA and IgG level compared to NS group. ADS18-Se modulate the caecum microbial population via enhancing beneficial bacteria and suppressing the E-coli and Salmonella spp. while both Se and Vit E factors had no effect on lymphoid organ weights. CONCLUSIONS: The inclusion of 100 mg/kg Vit E with 0.3 mg/kg ADS18-Se, effectively could support the immune system through regulation of some cytokines expression and immunoglobulin levels more than using ADS18-Se alone, while no difference was observed between using SS alone or combined with Vit E.


Chickens/immunology , Selenium/pharmacology , Vitamin E/pharmacology , Animals , Antioxidants/metabolism , Cecum/microbiology , Cytokines/genetics , Cytokines/metabolism , Diet/veterinary , Dietary Supplements , Female , Gastrointestinal Microbiome/drug effects , Immunoglobulins/blood , Klebsiella pneumoniae , Sodium Selenite/pharmacology
8.
BMC Vet Res ; 13(1): 254, 2017 Aug 18.
Article En | MEDLINE | ID: mdl-28821244

BACKGROUND: Selenium (Se) is an essential trace mineral in broilers, which has several important roles in biological processes. Organic forms of Se are more efficient than inorganic forms and can be produced biologically via Se microbial reduction. Hence, the possibility of using Se-enriched bacteria as feed supplement may provide an interesting source of organic Se, and benefit broiler antioxidant system and other biological processes. The objective of this study was to examine the impacts of inorganic Se and different bacterial organic Se sources on the performance, serum and tissues Se status, antioxidant capacity, and liver mRNA expression of selenoproteins in broilers. RESULTS: Results indicated that different Se sources did not significantly (P ≤ 0.05) affect broiler growth performance. However, bacterial organic Se of T5 (basal diet +0.3 mg /kg feed ADS18 Se), T4 (basal diet +0.3 mg /kg feed ADS2 Se), and T3 (basal diet +0.3 mg /kg feed ADS1 Se) exhibited significantly (P ≤ 0.05) highest Se concentration in serum, liver, and kidney respectively. Dietary inorganic Se and bacterial organic Se were observed to significantly affect broiler serum ALT, AST, LDH activities and serum creatinine level. ADS18 supplemented Se of (Stenotrophomonas maltophilia) bacterial strain showed the highest GSH-Px activity with the lowest MDA content in serum, and the highest GSH-Px and catalase activity in the kidney, while bacterial Se of ADS2 (Klebsiella pneumoniae) resulted in a higher level of GSH-Px1 and catalase in liver. Moreover, our study showed that in comparison with sodium selenite, only ADS18 bacterial Se showed a significantly higher mRNA level in GSH-Px1, GSH-Px4, DIO1, and TXNDR1, while both ADS18 and ADS2 showed high level of mRNA of DIO2 compared to sodium selenite. CONCLUSIONS: The supplementation of bacterial organic Se in broiler chicken, improved tissue Se deposition, antioxidant status, and selenoproteins gene expression, and can be considered as an effective alternative source of Se in broiler chickens.


Antioxidants/metabolism , Chickens/growth & development , Selenium/pharmacology , Selenoproteins/metabolism , Animals , Chickens/metabolism , Diet/veterinary , Dietary Supplements , Enterobacter cloacae/metabolism , Female , Gene Expression/drug effects , Klebsiella pneumoniae/metabolism , Selenium/analysis , Selenium/blood , Selenoproteins/genetics , Stenotrophomonas maltophilia/metabolism
9.
J Anim Sci Technol ; 57: 42, 2015.
Article En | MEDLINE | ID: mdl-26644913

BACKGROUND: Dietary fats can alter the deposition and distribution of body fats in ruminants. The deposition and distribution of body fat play a vital role in the quality of ruminant carcasses and are of great commercial value since they influence the profitability and consumer acceptability of ruminant meat. The current study examined the effects of dietary blend of 80 % canola oil and 20 % palm oil (BCPO) on carcass characteristics, meat yield and accretion of fatty acid (FA) in subcutaneous, omental, perirenal, and mesentery adipose depots and m. supraspinatus (SS) in goats. METHODS: Twenty four Boer crossbred bucks (BW 20.54 ± 0.47 kg) were randomly assigned to diets containing on DM basis 0, 4 and 8 % BCPO, fed for 100 d and harvested. RESULTS: Diet had no effect (P > 0.05) on slaughter weight, dressing percentage, carcass and non-carcass components, meat yield, color, moisture and carotenoid contents and weight of adipose tissues in goats. The proportion of C18:1n-9 and cis-9 trans-11 CLA in the omental, perirenal and SS was higher (P < 0.05) in goats fed 4 and 8 % BCPO compared with the control goats. Dietary BCPO reduced (P < 0.05) the proportion of C14:0 in the omental, perirenal and mesentery depots, C18:0 in the perirenal depot, C16:0 in the SS and C16:1n-7 in the SS, omental and perirenal tissues. Dietary BCPO enhanced the proportion of C18:1 trans-11 Vaccenic and C18:3n-3 in SS and C20:5n-3 in SS and mesentery depot. No significant changes were found in the FA composition of subcutaneous depot. CONCLUSIONS: Results indicate that dietary BCPO can be utilized to alter the FA composition of adipose tissues without detrimental effects on carcass characteristics in goats. Nonetheless, dietary BCPO is not an effective repartitioning agent for body fats in goats.

10.
Asian-Australas J Anim Sci ; 27(4): 503-10, 2014 Apr.
Article En | MEDLINE | ID: mdl-25049980

The study was conducted to determine the effect of feeding diets containing Andrographis paniculata leaves (APL), whole Andrographis paniculata plant (APWP) and a control without Andrographis paniculata (AP0), on growth performance, carcass characteristics and meat yield of 24 intact Boer bucks. The results obtained indicated that inclusion of Andrographis paniculata significantly improved feed intake, weight gain, feed efficiency and live weight. The ratios of carcass to fat, lean to bone, lean to fat, and composition of meat were also improved. In addition, there were significant differences (p<0.05) between the dietary treatments in dressing percentage and chilling loss. Goats fed on AP0 (control) had significantly higher proportions of fat and bone, as well as thicker back fat than the supplemented animals (APL and APWP). Higher gut fill in animals fed Andrographis paniculata suggested slow rate of digestion, which could have improved utilization and absorption of nutrients by the animals. Goats fed Andrographis paniculata also produced higher meat yield and relatively lower fat contents (p<0.05).

...