Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 29
1.
Rep Prog Phys ; 87(6)2024 May 20.
Article En | MEDLINE | ID: mdl-38701769

Infrared (IR) neuromodulation (INM) is an emerging light-based neuromodulation approach that can reversibly control neuronal and muscular activities through the transient and localized deposition of pulsed IR light without requiring any chemical or genetic pre-treatment of the target cells. Though the efficacy and short-term safety of INM have been widely demonstrated in both peripheral and central nervous systems, the investigations of the detailed cellular and biological processes and the underlying biophysical mechanisms are still ongoing. In this review, we discuss the current research progress in the INM field with a focus on the more recently discovered IR nerve inhibition. Major biophysical mechanisms associated with IR nerve stimulation are summarized. As the INM effects are primarily attributed to the spatiotemporal thermal transients induced by water and tissue absorption of pulsed IR light, temperature monitoring techniques and simulation models adopted in INM studies are discussed. Potential translational applications, current limitations, and challenges of the field are elucidated to provide guidance for future INM research and advancement.


Infrared Rays , Animals , Humans
2.
Opt Lett ; 49(6): 1457-1460, 2024 Mar 15.
Article En | MEDLINE | ID: mdl-38489424

The transient dynamics of photothermal signals provide interesting insights into material properties and heat diffusion. In a mid-infrared (mid-IR) photothermal microscope, the imaging contrast in a standard amplitude imaging can decrease due to thermal diffusion effects. It is shown that contrast varies for poly-methyl 2-methylpropenoate (PMMA) particles of different sizes when embedded in an absorbing medium of water (H2O) based on levels of heat exchange under the water absorption resonance. Using time-resolved boxcar (BC) detection, analysis of the transient thermal dynamics at the bead-water interface is presented, and the time decay parameters for 500 nm and 100 nm beads are determined. Enhanced (negative) imaging contrast is observed for less heat exchange between the water and bead, as in the case for the 100 nm bead. For the 500 nm bead, boxcar imaging before heat exchange starts occurring, leads to an increase of the imaging contrast up to a factor of 1.6.

3.
Anal Chem ; 95(45): 16514-16521, 2023 11 14.
Article En | MEDLINE | ID: mdl-37880191

Few experimental tools exist for performing label-free imaging of biological samples in a water-rich environment due to the high infrared absorption of water, overlapping with major protein and lipid bands. A novel imaging modality based on time-resolved mid-infrared photothermal microscopy is introduced and applied to imaging axon bundles in a saline bath environment. Photothermally induced spatial gradients at the axon bundle membrane interfaces with saline and surrounding biological tissue are observed and temporally characterized by a high-speed boxcar detection system. Localized time profiles with an enhanced signal-to-noise, hyper-temporal image stacks, and two-dimensional mapping of the time decay profiles are acquired without the need for complex post image processing. Axon bundles are found to have a larger distribution of time decay profiles compared to the water background, allowing background differentiation based on these transient dynamics. The quantitative analysis of the signal evolution over time allows characterizing the level of thermal confinement at different regions. When axon bundles are surrounded by complex heterogeneous tissue, which contains smaller features, a stronger thermal confinement is observed compared to a water environment, thus shedding light on the heat transfer dynamics across aqueous biological interfaces.


Microscopy , Water , Microscopy/methods , Axons , Image Processing, Computer-Assisted , Proteins
4.
Opt Express ; 31(16): 25850-25864, 2023 Jul 31.
Article En | MEDLINE | ID: mdl-37710460

Various dissipative soliton solutions exist in the parameter space of mode-locked fiber lasers, including both coherent and incoherent pulses. Novel ultrafast laser designs can lead to distinctive dissipative soliton solutions formed by unique pulse shaping dynamics in the same cavity. However, transitionary states in between steady-state mode-locked regimes remain largely unexplored. Here, we investigate the intermediate transition dynamics in a versatile Tm-doped fiber laser capable of emitting both dissipative solitons with anomalous-dispersion and normal-dispersion pulse-shaping mechanisms by adjusting an intracavity polarization controller. Real-time pulse dynamics during mode-locking transitions are analyzed with a modified dispersive Fourier transform setup, illustrating characteristic pulse shaping mechanisms typically reserved for different dispersion regimes. Combined with a spectral intensity correlation analysis, the coherence evolution between two distinct mode-locked states is fully resolved for the first time.

5.
J Biol Phys ; 49(3): 365-381, 2023 09.
Article En | MEDLINE | ID: mdl-37477759

An analytical model is presented for light scattering associated with heat transport near a cell membrane that divides a complex system into two topologically distinct half-spaces. Our analysis is motivated by experiments on vibrational photothermal microscopy which have not only demonstrated remarkably high contrast and resolution, but also are capable of providing label-free local information of heat transport in complex morphologies. In the first Born approximation, the derived Green's function leads to the reconstruction of a full 3D image with photothermal contrast obtained using both amplitude and phase detection of periodic excitations. We show that important fundamental parameters including the Kapitza length and Kapitza resistance can be derived from experiments. Our goal is to spur additional experimental studies with high-frequency modulation and heterodyne detection in order to make contact with recent theoretical molecular dynamics calculations of thermal transport properties in membrane systems.


Microscopy , Molecular Dynamics Simulation , Hot Temperature
6.
Sci Rep ; 12(1): 14196, 2022 08 20.
Article En | MEDLINE | ID: mdl-35987765

Infrared (IR) neuromodulation (INM) has been demonstrated as a novel modulation modality of neuronal excitability. However, the effects of pulsed IR light on synaptic transmission have not been investigated systematically. In this report, the IR light (2 µm) is used to directly modulate evoked synaptic transmission at the crayfish opener neuromuscular junction. The extracellularly recorded terminal action potentials (tAPs) and evoked excitatory postsynaptic currents (EPSCs) modulated by localized IR light illumination (500 ms, 3-13 mW) aimed at the synapses are analyzed. The impact of a single IR light pulse on the presynaptic Ca2+ influx is monitored with Ca2+ indicators. The EPSC amplitude is enhanced, and its rising phase is accelerated under relatively low IR light power levels and localized temperature rises. Increasing the IR light power reversibly suppresses and eventually blocks the EPSCs. Meanwhile, the synaptic delay, tAP amplitude, and presynaptic Ca2+ influx decrease monotonously with higher IR light power. It is demonstrated for the first time that IR light illumination has bidirectional effects on evoked synaptic transmission. These results highlight the efficacy and flexibility of using pulsed IR light to directly control synaptic transmission and advance our understanding of INM of neural networks.


Synapses , Synaptic Transmission , Action Potentials/physiology , Excitatory Postsynaptic Potentials/physiology , Neuromuscular Junction , Synapses/physiology , Synaptic Transmission/physiology
7.
Opt Express ; 30(9): 13977-13984, 2022 Apr 25.
Article En | MEDLINE | ID: mdl-35473151

The evolution of soliton pulses into noise-like pulses in a nonlinear fiber externally to the laser oscillator is demonstrated at 1.9 µm, for the first time. Soliton collapse based mechanisms induce noise-like pulses with varying properties as a function of nonlinear fiber length without requiring any laser cavity feedback. The proposed method allows the generation of noise-like pulses with a sub-300 fs spike and sub-40 ps pedestal duration. Power scaling of the noise-like pulses is demonstrated in a double-clad thulium-doped fiber amplifier with amplification up to an average power of 5.19 W, corresponding to a pulse energy of 244 nJ. This method provides an alternative route for generating fully synchronized noise-like pulses and solitons in the same system, without relying on the conventionally used mechanism of changing the intracavity nonlinearity within the laser cavity.

8.
Sci Rep ; 12(1): 6841, 2022 Apr 27.
Article En | MEDLINE | ID: mdl-35477967

Laser cavities which can generate different types of ultrashort pulses are attractive for practical applications and the study of pulse dynamics. Here, we report the first experimental observation of both conventional solitons (CS) and dissipative solitons (DS) generated from a single all-fiber laser with net-anomalous dispersion. A birefringence-related intracavity Lyot filter with an adjustable extinction ratio enables the switching between the two types of ultrashort pulses. Depending on the polarization controller settings and the pump power, either chirp-free CS with a pulse energy of 406 pJ and a spectral bandwidth of 5.1 nm or up-chirped DS with a pulse energy of 5.1 nJ and an optical bandwidth of 9.6 nm can be generated. Similar polarization features are observed when the laser switches between different soliton operations as both CS and DS are group-velocity-locked vector solitons. Our work paves a novel way to generate dissipative solitons with a relatively high pulse energy (one order of magnitude larger than for CS) and a large chirp directly from an all-fiber net-anomalous-dispersion cavity through birefringent filter management.

9.
Opt Express ; 30(5): 7894-7906, 2022 Feb 28.
Article En | MEDLINE | ID: mdl-35299542

We experimentally characterize the dynamics of soliton explosions in a transient chaotic state between a single and double pulsing state, as well as periodic explosions induced by soliton collisions in a dual wavelength soliton state. These explosions occurring in a thulium-doped linear fiber laser with net anomalous dispersion are characterized with real-time measurements based on a modified time-stretched dispersive Fourier transform method relying on second-harmonic generation.

10.
Biomed Opt Express ; 13(1): 374-388, 2022 Jan 01.
Article En | MEDLINE | ID: mdl-35154878

The excitatory and inhibitory effects of single and brief infrared (IR) light pulses (2 µm) with millisecond durations and various power levels are investigated with a custom-built fiber amplification system. Intracellular recordings from motor axons of the crayfish opener neuromuscular junction are performed ex vivo. Single IR light pulses induce a membrane depolarization during the light pulses, which is followed by a hyperpolarization that can last up to 100 ms. The depolarization amplitude is dependent on the optical pulse duration, total energy deposition and membrane potential, but is insensitive to tetrodotoxin. The hyperpolarization reverses its polarity near the potassium equilibrium potential and is barium-sensitive. The membrane depolarization activates an action potential (AP) when the axon is near firing threshold, while the hyperpolarization reversibly inhibits rhythmically firing APs. In summary, we demonstrate for the first time that single and brief IR light pulses can evoke initial depolarization followed by hyperpolarization on individual motor axons. The corresponding mechanisms and functional outcomes of the dual effects are investigated.

12.
Biomed Opt Express ; 12(1): 303-319, 2021 Jan 01.
Article En | MEDLINE | ID: mdl-33520386

Label-free vibrational imaging of biological samples has attracted significant interest due to its integration of structural and chemical information. Vibrational infrared photothermal amplitude and phase signal (VIPPS) imaging provide label-free chemical identification by targeting the characteristic resonances of biological compounds that are present in the mid-infrared fingerprint region (3 µm - 12 µm). High contrast imaging of subcellular features and chemical identification of protein secondary structures in unlabeled and labeled fibroblast cells embedded in a collagen-rich extracellular matrix is demonstrated by combining contrast from absorption signatures (amplitude signals) with sensitive detection of different heat properties (lock-in phase signals). We present that the detectability of nano-sized cell membranes is enhanced to well below the optical diffraction limit since the membranes are found to act as thermal barriers. VIPPS offers a novel combination of chemical imaging and thermal diffusion characterization that paves the way towards label-free imaging of cell models and tissues as well as the study of intracellular heat dynamics.

13.
Neurophotonics ; 7(4): 045003, 2020 Oct.
Article En | MEDLINE | ID: mdl-33094124

Significance: Systematic studies of the physiological outputs induced by infrared (IR)-mediated inhibition of motor nerves can provide guidance for therapeutic applications and offer critical insights into IR light modulation of complex neural networks. Aim: We explore the IR-mediated inhibition of action potentials (APs) that either propagate along single axons or are initiated locally and their downstream synaptic transmission responses. Approach: APs were evoked locally by two-electrode current clamp or at a distance for propagating APs. The neuromuscular transmission was recorded with intracellular electrodes in muscle cells or macro-patch pipettes on terminal bouton clusters. Results: IR light pulses completely and reversibly terminate the locally initiated APs firing at low frequencies, which leads to blocking of the synaptic transmission. However, IR light pulses only suppress but do not block the amplitude and duration of propagating APs nor locally initiated APs firing at high frequencies. Such suppressed APs do not influence the postsynaptic responses at a distance. While the suppression of AP amplitude and duration is similar for propagating and locally evoked APs, only the former exhibits a 7% to 21% increase in the maximum time derivative of the AP rising phase. Conclusions: The suppressed APs of motor axons can resume their waveforms after passing the localized IR light illumination site, leaving the muscular and synaptic responses unchanged. IR-mediated modulation on propagating and locally evoked APs should be considered as two separate models for axonal and somatic modulations.

14.
J Endourol ; 34(6): 682-686, 2020 06.
Article En | MEDLINE | ID: mdl-32216458

Introduction: Flexible ureteroscopy is a mainstay of upper urinary tract stone treatment. Holmium laser lithotripsy is a particularly common and notable technique for the dusting and fragmenting of renal stones. During ureteroscopy, optical fibers are subject to sharp bends in pursuit of stones, particularly those at the lower pole. Following from principles of fiber optics, subjecting these fibers to sharp bending angle has the potential to reduce the efficiency of power transmission at the fiber tip. Due to the potential implications this hypothesis could have on endourological practice and research, we aimed to explore the potential impact of fiber bending on end-fiber power output. Materials and Methods: Using a highly sensitive oscilloscope and a urological holmium laser, we assessed the end-fiber power output under a variety of bending conditions. To ensure maximal confidence in our results, the maximal bending conditions explored substantially exceeded any condition, which could occur during ureteroscopic surgery. Results: We found evidence that bending radius alone has a clinically insignificant impact on the light power transmission in the fiber. At certain bending conditions, we observed a clinically unimportant but statistically significant reduction in power transmission. This was verified using two commonly used delivery fiber types exposed to 8-second bursts for each bending condition.


Lasers, Solid-State , Lithotripsy, Laser , Holmium , Humans , Radius , Ureteroscopy
15.
Biomed Opt Express ; 10(12): 6580-6594, 2019 Dec 01.
Article En | MEDLINE | ID: mdl-31853418

The infrared (IR) inhibition of axonal activities in the crayfish neuromuscular preparation is studied using 2 µm IR light pulses with varying durations. The intracellular neuronal activities are monitored with two-electrode current clamp, while the IR-induced temperature changes are measured by the open patch technique simultaneously. It is demonstrated that the IR pulses can reversibly shape or block locally initiated action potentials. Suppression of the AP amplitude and duration and decrease in axonal excitability by IR pulses are quantitatively analyzed. While the AP amplitude and duration decrease similarly during IR illumination, it is discovered that the recovery of the AP duration after the IR pulses is slower than that of the AP amplitude. An IR-induced decrease in the input resistance (8.8%) is detected and discussed together with the temperature dependent changes in channel kinetics as contributing factors for the inhibition reported here.

16.
Opt Express ; 27(3): 2643-2655, 2019 Feb 04.
Article En | MEDLINE | ID: mdl-30732299

Imaging of the phase output of a lock-in amplifier in mid-infrared photothermal vibrational microscopy is demonstrated for the first time in combination with nonlinear demodulation. In general, thermal blurring and heat transport phenomena contribute to the resolution and sensitivity of mid-infrared photothermal imaging. For heterogeneous samples with multiple absorbing features, if imaged in a spectral regime of comparable absorption with their embedding medium, it is demonstrated that differentiation with high contrast is achieved in complementary imaging of the phase signal obtained from a lock-in amplifier compared to standard imaging of the photothermal amplitude signal. Specifically, by investigating the relative contribution of the out-of-phase lock-in signal, information based on changes in the rate of heat transport can be extracted, and inhomogeneities in the thermal diffusion properties across the sample plane can be mapped with high sensitivity and sub-diffraction limited resolution. Under these imaging conditions, wavenumber regimes can be identified in which the thermal diffusion contributions are minimized and an enhancement of the spatial resolution beyond the diffraction limited spot size of the probe beam in the corresponding phase images is achieved. By combining relative diffusive phase imaging with nonlinear demodulation at the second harmonic, it is demonstrated that 1-µm-size melamine beads embedded in a thin layer of 4-octyl-4'-cyanobiphenyl (8CB) liquid crystal can be detected with a 1.3-µm spatial full-width at half-maximum (FWHM) resolution. Thus, imaging with a resolving power that exceeds the probe diffraction limited spot size by a factor of 2.5 is presented, which paves the route towards super-resolution, label-free imaging in the mid-infrared.

17.
Opt Express ; 26(19): 24687-24694, 2018 Sep 17.
Article En | MEDLINE | ID: mdl-30469581

GHz high repetition rate compact sources with femtosecond pulse durations and stable performance can enable a wide range of applications. In this paper, several high repetition rate ultrafast thulium fiber lasers with repetition rates varying between 532 MHz to 1.25 GHz are demonstrated with femtosecond pulse durations down to 426 fs. An approach of maintaining comparable pulse energies while scaling the repetition rates allows high-quality femtosecond mode-locking performance with low noise performance in thulium soliton lasers for the first time.

18.
Sci Rep ; 8(1): 13385, 2018 Sep 06.
Article En | MEDLINE | ID: mdl-30190582

Pathways towards the generation of extreme optical pulsation in a chaotic transition regime in a linear fibre laser cavity configuration are presented. In a thulium mode-locked fibre laser, extreme events that can be controllably induced by manipulating the cavity birefringence for pulse energies exceeding the single soliton pulse operating regime are studied in detail for the first time. While a solitonic pulsation structure at the fundamental repetition rate is maintained, additional energy is shed in a chaotic manner, leading to broader spectral generation and shorter pulse durations whose behaviour deviates significantly from a classical statistical distribution. These pulses display markedly different characteristics from any previously reported extreme events in fibre lasers associated with multiple solitons and pulse bunching, thus presenting a novel observation of extreme pulsation. Detailed noise studies indicate that significant enhancement of relaxation oscillations, modulation instability and the interplay with reabsorption mechanisms contribute in this transient chaotic regime. The extreme pulsation generated in a compact fibre laser without any additional nonlinear attractors can provide an attractive platform to accelerate the exploration of the underlying physics of the chaos observed in mode-locked laser systems and can lead to novel fibre laser cavity designs.

19.
Opt Express ; 25(16): 18592-18602, 2017 Aug 07.
Article En | MEDLINE | ID: mdl-29041057

Ultra-high precision dual-comb spectroscopy traditionally requires two mode-locked, fully stabilized lasers with complex feedback electronics. We present a novel mode-locked operation regime in a thulium-holmium co-doped fiber laser, a frequency-halved state with orthogonally polarized interlaced pulses, for dual comb generation from a single source. In a linear fiber laser cavity, an ultrafast pulse train composed of co-generated, equal intensity and orthogonally polarized consecutive pulses at half of the fundamental repetition rate is demonstrated based on vector solitons. Upon optical interference of the orthogonally polarized pulse trains, two stable microwave RF beat combs are formed, effectively down-converting the optical properties into the microwave regime. These co-generated, dual polarization interlaced pulse trains, from one all-fiber laser configuration with common mode suppression, thus provide an attractive compact source for dual-comb spectroscopy, optical metrology and polarization entanglement measurements.

20.
Analyst ; 142(11): 1882-1890, 2017 May 30.
Article En | MEDLINE | ID: mdl-28275761

We report a novel nonlinear mid-infrared vibrational spectroscopy regime where multiple bifurcations and signal enhancement are observed in the photothermal spectrum of a 6 µm-thick layer of 4-octyl-4'-cyanobiphenyl (8CB) liquid crystal. For increasing pump power values, the nonlinear evolution of the photothermal spectrum is studied in 8CB samples initially in the crystalline and smectic-A phase and their non-equilibrium transitions are characterized with pump-probe thermal lens spectroscopy. The nonlinear photothermal phenomena can be explained by the nucleation of localized non-equilibrium transitions that leads to the formation of bubbles, which modify the thermal lensing behavior. Analysis of the multiple bifurcations reveals a universal critical exponent for these non-equilibrium dynamics that can be linked to mean field theory. We report for the first time simultaneous measurement of the photothermal signal amplitude and phase behavior in the nonlinear regime. Due to the signal enhancement and spectral narrowing observed, nonlinear photothermal behavior shows promise for improvement in sensitivity and signal contrast in mid-infrared, attractive for sample characterization in the mid-infrared.

...